spaCy/website/usage/_facts-figures/_benchmarks-models.jade

106 lines
3.4 KiB
Plaintext

//- 💫 DOCS > USAGE > FACTS & FIGURES > BENCHMARKS > MODEL COMPARISON
p
| In this section, we provide benchmark accuracies for the pre-trained
| model pipelines we distribute with spaCy. Evaluations are conducted
| end-to-end from raw text, with no "gold standard" pre-processing, over
| text from a mix of genres where possible. For are more detailed
| comparison of the available models, see the new
| #[+a("/models/comparison") model comparison tool].
+aside("Methodology")
| The evaluation was conducted on raw text with no gold standard
| information. The parser, tagger and entity recognizer were trained on the
| #[+a("https://www.gabormelli.com/RKB/OntoNotes_Corpus") OntoNotes 5]
| corpus, the word vectors on #[+a("http://commoncrawl.org") Common Crawl].
+h(4, "benchmarks-models-english") English
+table(["Model", "spaCy", "Type", "UAS", "NER F", "POS", "WPS", "Size"])
+row
+cell #[+a("/models/en#en_core_web_sm") #[code en_core_web_sm]] 2.0.0
+cell("num") 2.x
+cell neural
+cell("num") 91.7
+cell("num") 85.3
+cell("num") 97.0
+cell("num") 10.1k
+cell("num") #[strong 35MB]
+row
+cell #[+a("/models/en#en_core_web_md") #[code en_core_web_md]] 2.0.0
+cell("num") 2.x
+cell neural
+cell("num") 91.7
+cell("num") #[strong 85.9]
+cell("num") 97.1
+cell("num") 10.0k
+cell("num") 115MB
+row
+cell #[+a("/models/en#en_core_web_lg") #[code en_core_web_lg]] 2.0.0
+cell("num") 2.x
+cell neural
+cell("num") #[strong 91.9]
+cell("num") #[strong 85.9]
+cell("num") #[strong 97.2]
+cell("num") 10.0k
+cell("num") 812MB
+row("divider")
+cell #[code en_core_web_sm] 1.2.0
+cell("num") 1.x
+cell linear
+cell("num") 86.6
+cell("num") 78.5
+cell("num") 96.6
+cell("num") #[strong 25.7k]
+cell("num") 50MB
+row
+cell #[code en_core_web_md] 1.2.1
+cell("num") 1.x
+cell linear
+cell("num") 90.6
+cell("num") 81.4
+cell("num") 96.7
+cell("num") 18.8k
+cell("num") 1GB
+h(4, "benchmarks-models-spanish") Spanish
+aside("Evaluation note")
| The NER accuracy refers to the "silver standard" annotations in the
| WikiNER corpus. Accuracy on these annotations tends to be higher than
| correct human annotations.
+table(["Model", "spaCy", "Type", "UAS", "NER F", "POS", "WPS", "Size"])
+row
+cell #[+a("/models/es#es_core_news_sm") #[code es_core_news_sm]] 2.0.0
+cell("num") 2.x
+cell("num") neural
+cell("num") 89.8
+cell("num") 88.7
+cell("num") #[strong 96.9]
+cell("num") #[em n/a]
+cell("num") #[strong 35MB]
+row
+cell #[+a("/models/es#es_core_news_md") #[code es_core_news_md]] 2.0.0
+cell("num") 2.x
+cell("num") neural
+cell("num") #[strong 90.2]
+cell("num") 89.0
+cell("num") 97.8
+cell("num") #[em n/a]
+cell("num") 93MB
+row("divider")
+cell #[code es_core_web_md] 1.1.0
each data in ["1.x", "linear", 87.5]
+cell("num")=data
+cell("num") #[strong 94.2]
+cell("num") 96.7
+cell("num") #[em n/a]
+cell("num") 377MB