spaCy/spacy/morphology.pyx

668 lines
22 KiB
Cython

# cython: infer_types
# coding: utf8
from __future__ import unicode_literals
from libc.string cimport memset
import ujson as json
from .attrs cimport POS, IS_SPACE
from .attrs import LEMMA, intify_attrs
from .parts_of_speech cimport SPACE
from .parts_of_speech import IDS as POS_IDS
from .lexeme cimport Lexeme
from .errors import Errors
def _normalize_props(props):
"""Transform deprecated string keys to correct names."""
out = {}
for key, value in props.items():
if key == POS:
if hasattr(value, 'upper'):
value = value.upper()
if value in POS_IDS:
value = POS_IDS[value]
out[key] = value
elif isinstance(key, int):
out[key] = value
elif key.lower() == 'pos':
out[POS] = POS_IDS[value.upper()]
else:
out[key] = value
return out
cdef class Morphology:
'''Store the possible morphological analyses for a language, and index them
by hash.
To save space on each token, tokens only know the hash of their morphological
analysis, so queries of morphological attributes are delegated
to this class.
'''
def __init__(self, StringStore string_store, tag_map, lemmatizer, exc=None):
self.mem = Pool()
self.strings = string_store
self.tags = PreshMap()
# Add special space symbol. We prefix with underscore, to make sure it
# always sorts to the end.
space_attrs = tag_map.get('SP', {POS: SPACE})
if '_SP' not in tag_map:
self.strings.add('_SP')
tag_map = dict(tag_map)
tag_map['_SP'] = space_attrs
self.tag_names = tuple(sorted(tag_map.keys()))
self.tag_map = {}
self.lemmatizer = lemmatizer
self.n_tags = len(tag_map)
self.reverse_index = {}
for i, (tag_str, attrs) in enumerate(sorted(tag_map.items())):
self.tag_map[tag_str] = dict(attrs)
self.reverse_index[i] = self.strings.add(tag_str)
self._cache = PreshMapArray(self.n_tags)
self.exc = {}
if exc is not None:
for (tag_str, orth_str), attrs in exc.items():
self.add_special_case(tag_str, orth_str, attrs)
def add(self, features):
"""Insert a morphological analysis in the morphology table, if not already
present. Returns the hash of the new analysis.
"""
features = intify_features(self.strings, features)
cdef RichTagC tag = create_rich_tag(features)
cdef hash_t key = self.insert(tag)
return key
def lemmatize(self, const univ_pos_t univ_pos, attr_t orth, morphology):
if orth not in self.strings:
return orth
cdef unicode py_string = self.strings[orth]
if self.lemmatizer is None:
return self.strings.add(py_string.lower())
cdef list lemma_strings
cdef unicode lemma_string
lemma_strings = self.lemmatizer(py_string, univ_pos, morphology)
lemma_string = lemma_strings[0]
lemma = self.strings.add(lemma_string)
return lemma
cdef hash_t insert(self, RichTagC tag) except 0:
cdef hash_t key = hash_tag(tag)
if self.tags.get(key) == NULL:
tag_ptr = <RichTagC*>self.mem.alloc(1, sizeof(RichTagC))
tag_ptr[0] = tag
self.tags.set(key, <void*>tag_ptr)
return key
cdef int assign_untagged(self, TokenC* token) except -1:
"""Set morphological attributes on a token without a POS tag. Uses
the lemmatizer's lookup() method, which looks up the string in the
table provided by the language data as lemma_lookup (if available).
"""
if token.lemma == 0:
orth_str = self.strings[token.lex.orth]
lemma = self.lemmatizer.lookup(orth_str)
token.lemma = self.strings.add(lemma)
cdef int assign_tag(self, TokenC* token, tag) except -1:
if isinstance(tag, basestring):
tag = self.strings.add(tag)
if tag in self.reverse_index:
tag_id = self.reverse_index[tag]
self.assign_tag_id(token, tag_id)
else:
token.tag = tag
cdef int assign_tag_id(self, TokenC* token, int tag_id) except -1:
if tag_id > self.n_tags:
raise ValueError(Errors.E014.format(tag=tag_id))
# TODO: It's pretty arbitrary to put this logic here. I guess the
# justification is that this is where the specific word and the tag
# interact. Still, we should have a better way to enforce this rule, or
# figure out why the statistical model fails. Related to Issue #220
if Lexeme.c_check_flag(token.lex, IS_SPACE):
tag_id = self.reverse_index[self.strings.add('_SP')]
lemma = <attr_t>self._cache.get(tag_id, token.lex.orth)
if lemma == 0:
tag_str = self.tag_names[tag_id]
features = dict(self.tag_map.get(tag_str, {}))
pos = self.strings.as_int(features.pop('POS'))
lemma = self.lemmatize(pos, token.lex.orth, features)
self._cache.set(tag_id, token.lex.orth, lemma)
token.lemma = lemma
token.pos = pos
token.tag = self.strings[tag_str]
token.morph = self.add(attrs)
cdef update_morph(self, hash_t morph, features):
"""Update a morphological analysis with new feature values."""
tag = (<RichTagC*>self.tags.get(morph))[0]
cdef univ_morph_t feature
cdef int value
for feature_, value in features.items():
feature = self.strings.as_int(feature_)
set_feature(&tag, feature, 1)
morph = self.insert_tag(tag)
return morph
def to_bytes(self):
json_tags = []
for key in self.tags:
tag_ptr = <RichTagC*>self.tags.get(key)
if tag_ptr != NULL:
json_tags.append(tag_to_json(tag_ptr[0]))
raise json.dumps(json_tags)
def from_bytes(self, byte_string):
raise NotImplementedError
def to_disk(self, path):
raise NotImplementedError
def from_disk(self, path):
raise NotImplementedError
cpdef univ_pos_t get_int_tag(pos_):
return <univ_pos_t>0
cpdef intify_features(StringStore strings, features):
return {strings.as_int(feature) for feature in features}
cdef hash_t hash_tag(RichTagC tag) nogil:
return mrmr.hash64(&tag, sizeof(tag), 0)
cdef RichTagC create_rich_tag(pos_, features):
cdef RichTagC tag
cdef univ_morph_t feature
tag.pos = get_int_tag(pos_)
for feature in features:
set_feature(&tag, feature, 1)
return tag
cdef tag_to_json(RichTagC tag):
return {}
cdef RichTagC tag_from_json(json_tag):
cdef RichTagC tag
return tag
cdef int set_feature(RichTagC* tag, univ_morph_t feature, int value) nogil:
if value == True:
value_ = feature
else:
value_ = NIL
if feature == NIL:
pass
if is_abbr_feature(feature):
tag.abbr = value_
elif is_adp_type_feature(feature):
tag.adp_type = value_
elif is_adv_type_feature(feature):
tag.adv_type = value_
elif is_animacy_feature(feature):
tag.animacy = value_
elif is_aspect_feature(feature):
tag.aspect = value_
elif is_case_feature(feature):
tag.case = value_
elif is_conj_type_feature(feature):
tag.conj_type = value_
elif is_connegative_feature(feature):
tag.connegative = value_
elif is_definite_feature(feature):
tag.definite = value_
elif is_degree_feature(feature):
tag.degree = value_
elif is_derivation_feature(feature):
tag.derivation = value_
elif is_echo_feature(feature):
tag.echo = value_
elif is_foreign_feature(feature):
tag.foreign = value_
elif is_gender_feature(feature):
tag.gender = value_
elif is_hyph_feature(feature):
tag.hyph = value_
elif is_inf_form_feature(feature):
tag.inf_form = value_
elif is_mood_feature(feature):
tag.mood = value_
elif is_negative_feature(feature):
tag.negative = value_
elif is_number_feature(feature):
tag.number = value_
elif is_name_type_feature(feature):
tag.name_type = value_
elif is_num_form_feature(feature):
tag.num_form = value_
elif is_num_value_feature(feature):
tag.num_value = value_
elif is_part_form_feature(feature):
tag.part_form = value_
elif is_part_type_feature(feature):
tag.part_type = value_
elif is_person_feature(feature):
tag.person = value_
elif is_polite_feature(feature):
tag.polite = value_
elif is_polarity_feature(feature):
tag.polarity = value_
elif is_poss_feature(feature):
tag.poss = value_
elif is_prefix_feature(feature):
tag.prefix = value_
elif is_prep_case_feature(feature):
tag.prep_case = value_
elif is_pron_type_feature(feature):
tag.pron_type = value_
elif is_punct_side_feature(feature):
tag.punct_type = value_
elif is_reflex_feature(feature):
tag.reflex = value_
elif is_style_feature(feature):
tag.style = value_
elif is_style_variant_feature(feature):
tag.style_variant = value_
elif is_tense_feature(feature):
tag.tense = value_
elif is_verb_form_feature(feature):
tag.verb_form = value_
elif is_voice_feature(feature):
tag.voice = value_
elif is_verb_type_feature(feature):
tag.verb_type = value_
else:
with gil:
raise ValueError("Unknown feature: %d" % feature)
cdef int is_abbr_feature(univ_morph_t abbr) nogil:
return 0
cdef int is_adp_type_feature(univ_morph_t feature) nogil:
return 0
cdef int is_adv_type_feature(univ_morph_t feature) nogil:
return 0
cdef int is_animacy_feature(univ_morph_t feature) nogil:
return 0
cdef int is_aspect_feature(univ_morph_t feature) nogil:
return 0
cdef int is_case_feature(univ_morph_t feature) nogil:
return 0
cdef int is_conj_type_feature(univ_morph_t feature) nogil:
return 0
cdef int is_connegative_feature(univ_morph_t feature) nogil:
return 0
cdef int is_definite_feature(univ_morph_t feature) nogil:
return 0
cdef int is_degree_feature(univ_morph_t feature) nogil:
return 0
cdef int is_derivation_feature(univ_morph_t feature) nogil:
return 0
cdef int is_echo_feature(univ_morph_t feature) nogil:
return 0
cdef int is_foreign_feature(univ_morph_t feature) nogil:
return 0
cdef int is_gender_feature(univ_morph_t feature) nogil:
return 0
cdef int is_hyph_feature(univ_morph_t feature) nogil:
return 0
cdef int is_inf_form_feature(univ_morph_t feature) nogil:
return 0
cdef int is_mood_feature(univ_morph_t feature) nogil:
return 0
cdef int is_negative_feature(univ_morph_t feature) nogil:
return 0
cdef int is_number_feature(univ_morph_t feature) nogil:
return 0
cdef int is_name_type_feature(univ_morph_t feature) nogil:
return 0
cdef int is_num_form_feature(univ_morph_t feature) nogil:
return 0
cdef int is_num_type_feature(univ_morph_t feature) nogil:
return 0
cdef int is_num_value_feature(univ_morph_t feature) nogil:
return 0
cdef int is_part_form_feature(univ_morph_t feature) nogil:
return 0
cdef int is_part_type_feature(univ_morph_t feature) nogil:
return 0
cdef int is_person_feature(univ_morph_t feature) nogil:
return 0
cdef int is_polite_feature(univ_morph_t feature) nogil:
return 0
cdef int is_polarity_feature(univ_morph_t feature) nogil:
return 0
cdef int is_poss_feature(univ_morph_t feature) nogil:
return 0
cdef int is_prefix_feature(univ_morph_t feature) nogil:
return 0
cdef int is_prep_case_feature(univ_morph_t feature) nogil:
return 0
cdef int is_pron_type_feature(univ_morph_t feature) nogil:
return 0
cdef int is_punct_side_feature(univ_morph_t feature) nogil:
return 0
cdef int is_punct_type_feature(univ_morph_t feature) nogil:
return 0
cdef int is_reflex_feature(univ_morph_t feature) nogil:
return 0
cdef int is_style_feature(univ_morph_t feature) nogil:
return 0
cdef int is_style_variant_feature(univ_morph_t feature) nogil:
return 0
cdef int is_tense_feature(univ_morph_t feature) nogil:
return 0
cdef int is_verb_form_feature(univ_morph_t feature) nogil:
return 0
cdef int is_voice_feature(univ_morph_t feature) nogil:
return 0
cdef int is_verb_type_feature(univ_morph_t feature) nogil:
return 0
IDS = {
"Animacy_anim": Animacy_anim,
"Animacy_inan": Animacy_inan,
"Animacy_hum": Animacy_hum, # U20
"Animacy_nhum": Animacy_nhum,
"Aspect_freq": Aspect_freq,
"Aspect_imp": Aspect_imp,
"Aspect_mod": Aspect_mod,
"Aspect_none": Aspect_none,
"Aspect_perf": Aspect_perf,
"Case_abe": Case_abe,
"Case_abl": Case_abl,
"Case_abs": Case_abs,
"Case_acc": Case_acc,
"Case_ade": Case_ade,
"Case_all": Case_all,
"Case_cau": Case_cau,
"Case_com": Case_com,
"Case_dat": Case_dat,
"Case_del": Case_del,
"Case_dis": Case_dis,
"Case_ela": Case_ela,
"Case_ess": Case_ess,
"Case_gen": Case_gen,
"Case_ill": Case_ill,
"Case_ine": Case_ine,
"Case_ins": Case_ins,
"Case_loc": Case_loc,
"Case_lat": Case_lat,
"Case_nom": Case_nom,
"Case_par": Case_par,
"Case_sub": Case_sub,
"Case_sup": Case_sup,
"Case_tem": Case_tem,
"Case_ter": Case_ter,
"Case_tra": Case_tra,
"Case_voc": Case_voc,
"Definite_two": Definite_two,
"Definite_def": Definite_def,
"Definite_red": Definite_red,
"Definite_cons": Definite_cons, # U20
"Definite_ind": Definite_ind,
"Degree_cmp": Degree_cmp,
"Degree_comp": Degree_comp,
"Degree_none": Degree_none,
"Degree_pos": Degree_pos,
"Degree_sup": Degree_sup,
"Degree_abs": Degree_abs,
"Degree_com": Degree_com,
"Degree_dim ": Degree_dim, # du
"Gender_com": Gender_com,
"Gender_fem": Gender_fem,
"Gender_masc": Gender_masc,
"Gender_neut": Gender_neut,
"Mood_cnd": Mood_cnd,
"Mood_imp": Mood_imp,
"Mood_ind": Mood_ind,
"Mood_n": Mood_n,
"Mood_pot": Mood_pot,
"Mood_sub": Mood_sub,
"Mood_opt": Mood_opt,
"Negative_neg": Negative_neg,
"Negative_pos": Negative_pos,
"Negative_yes": Negative_yes,
"Polarity_neg": Polarity_neg, # U20
"Polarity_pos": Polarity_pos, # U20
"Number_com": Number_com,
"Number_dual": Number_dual,
"Number_none": Number_none,
"Number_plur": Number_plur,
"Number_sing": Number_sing,
"Number_ptan ": Number_ptan, # bg
"Number_count ": Number_count, # bg
"NumType_card": NumType_card,
"NumType_dist": NumType_dist,
"NumType_frac": NumType_frac,
"NumType_gen": NumType_gen,
"NumType_mult": NumType_mult,
"NumType_none": NumType_none,
"NumType_ord": NumType_ord,
"NumType_sets": NumType_sets,
"Person_one": Person_one,
"Person_two": Person_two,
"Person_three": Person_three,
"Person_none": Person_none,
"Poss_yes": Poss_yes,
"PronType_advPart": PronType_advPart,
"PronType_art": PronType_art,
"PronType_default": PronType_default,
"PronType_dem": PronType_dem,
"PronType_ind": PronType_ind,
"PronType_int": PronType_int,
"PronType_neg": PronType_neg,
"PronType_prs": PronType_prs,
"PronType_rcp": PronType_rcp,
"PronType_rel": PronType_rel,
"PronType_tot": PronType_tot,
"PronType_clit": PronType_clit,
"PronType_exc ": PronType_exc, # es, ca, it, fa,
"Reflex_yes": Reflex_yes,
"Tense_fut": Tense_fut,
"Tense_imp": Tense_imp,
"Tense_past": Tense_past,
"Tense_pres": Tense_pres,
"VerbForm_fin": VerbForm_fin,
"VerbForm_ger": VerbForm_ger,
"VerbForm_inf": VerbForm_inf,
"VerbForm_none": VerbForm_none,
"VerbForm_part": VerbForm_part,
"VerbForm_partFut": VerbForm_partFut,
"VerbForm_partPast": VerbForm_partPast,
"VerbForm_partPres": VerbForm_partPres,
"VerbForm_sup": VerbForm_sup,
"VerbForm_trans": VerbForm_trans,
"VerbForm_conv": VerbForm_conv, # U20
"VerbForm_gdv ": VerbForm_gdv, # la,
"Voice_act": Voice_act,
"Voice_cau": Voice_cau,
"Voice_pass": Voice_pass,
"Voice_mid ": Voice_mid, # gkc,
"Voice_int ": Voice_int, # hb,
"Abbr_yes ": Abbr_yes, # cz, fi, sl, U,
"AdpType_prep ": AdpType_prep, # cz, U,
"AdpType_post ": AdpType_post, # U,
"AdpType_voc ": AdpType_voc, # cz,
"AdpType_comprep ": AdpType_comprep, # cz,
"AdpType_circ ": AdpType_circ, # U,
"AdvType_man": AdvType_man,
"AdvType_loc": AdvType_loc,
"AdvType_tim": AdvType_tim,
"AdvType_deg": AdvType_deg,
"AdvType_cau": AdvType_cau,
"AdvType_mod": AdvType_mod,
"AdvType_sta": AdvType_sta,
"AdvType_ex": AdvType_ex,
"AdvType_adadj": AdvType_adadj,
"ConjType_oper ": ConjType_oper, # cz, U,
"ConjType_comp ": ConjType_comp, # cz, U,
"Connegative_yes ": Connegative_yes, # fi,
"Derivation_minen ": Derivation_minen, # fi,
"Derivation_sti ": Derivation_sti, # fi,
"Derivation_inen ": Derivation_inen, # fi,
"Derivation_lainen ": Derivation_lainen, # fi,
"Derivation_ja ": Derivation_ja, # fi,
"Derivation_ton ": Derivation_ton, # fi,
"Derivation_vs ": Derivation_vs, # fi,
"Derivation_ttain ": Derivation_ttain, # fi,
"Derivation_ttaa ": Derivation_ttaa, # fi,
"Echo_rdp ": Echo_rdp, # U,
"Echo_ech ": Echo_ech, # U,
"Foreign_foreign ": Foreign_foreign, # cz, fi, U,
"Foreign_fscript ": Foreign_fscript, # cz, fi, U,
"Foreign_tscript ": Foreign_tscript, # cz, U,
"Foreign_yes ": Foreign_yes, # sl,
"Gender_dat_masc ": Gender_dat_masc, # bq, U,
"Gender_dat_fem ": Gender_dat_fem, # bq, U,
"Gender_erg_masc ": Gender_erg_masc, # bq,
"Gender_erg_fem ": Gender_erg_fem, # bq,
"Gender_psor_masc ": Gender_psor_masc, # cz, sl, U,
"Gender_psor_fem ": Gender_psor_fem, # cz, sl, U,
"Gender_psor_neut ": Gender_psor_neut, # sl,
"Hyph_yes ": Hyph_yes, # cz, U,
"InfForm_one ": InfForm_one, # fi,
"InfForm_two ": InfForm_two, # fi,
"InfForm_three ": InfForm_three, # fi,
"NameType_geo ": NameType_geo, # U, cz,
"NameType_prs ": NameType_prs, # U, cz,
"NameType_giv ": NameType_giv, # U, cz,
"NameType_sur ": NameType_sur, # U, cz,
"NameType_nat ": NameType_nat, # U, cz,
"NameType_com ": NameType_com, # U, cz,
"NameType_pro ": NameType_pro, # U, cz,
"NameType_oth ": NameType_oth, # U, cz,
"NounType_com ": NounType_com, # U,
"NounType_prop ": NounType_prop, # U,
"NounType_class ": NounType_class, # U,
"Number_abs_sing ": Number_abs_sing, # bq, U,
"Number_abs_plur ": Number_abs_plur, # bq, U,
"Number_dat_sing ": Number_dat_sing, # bq, U,
"Number_dat_plur ": Number_dat_plur, # bq, U,
"Number_erg_sing ": Number_erg_sing, # bq, U,
"Number_erg_plur ": Number_erg_plur, # bq, U,
"Number_psee_sing ": Number_psee_sing, # U,
"Number_psee_plur ": Number_psee_plur, # U,
"Number_psor_sing ": Number_psor_sing, # cz, fi, sl, U,
"Number_psor_plur ": Number_psor_plur, # cz, fi, sl, U,
"NumForm_digit ": NumForm_digit, # cz, sl, U,
"NumForm_roman ": NumForm_roman, # cz, sl, U,
"NumForm_word ": NumForm_word, # cz, sl, U,
"NumValue_one ": NumValue_one, # cz, U,
"NumValue_two ": NumValue_two, # cz, U,
"NumValue_three ": NumValue_three, # cz, U,
"PartForm_pres ": PartForm_pres, # fi,
"PartForm_past ": PartForm_past, # fi,
"PartForm_agt ": PartForm_agt, # fi,
"PartForm_neg ": PartForm_neg, # fi,
"PartType_mod ": PartType_mod, # U,
"PartType_emp ": PartType_emp, # U,
"PartType_res ": PartType_res, # U,
"PartType_inf ": PartType_inf, # U,
"PartType_vbp ": PartType_vbp, # U,
"Person_abs_one ": Person_abs_one, # bq, U,
"Person_abs_two ": Person_abs_two, # bq, U,
"Person_abs_three ": Person_abs_three, # bq, U,
"Person_dat_one ": Person_dat_one, # bq, U,
"Person_dat_two ": Person_dat_two, # bq, U,
"Person_dat_three ": Person_dat_three, # bq, U,
"Person_erg_one ": Person_erg_one, # bq, U,
"Person_erg_two ": Person_erg_two, # bq, U,
"Person_erg_three ": Person_erg_three, # bq, U,
"Person_psor_one ": Person_psor_one, # fi, U,
"Person_psor_two ": Person_psor_two, # fi, U,
"Person_psor_three ": Person_psor_three, # fi, U,
"Polite_inf ": Polite_inf, # bq, U,
"Polite_pol ": Polite_pol, # bq, U,
"Polite_abs_inf ": Polite_abs_inf, # bq, U,
"Polite_abs_pol ": Polite_abs_pol, # bq, U,
"Polite_erg_inf ": Polite_erg_inf, # bq, U,
"Polite_erg_pol ": Polite_erg_pol, # bq, U,
"Polite_dat_inf ": Polite_dat_inf, # bq, U,
"Polite_dat_pol ": Polite_dat_pol, # bq, U,
"Prefix_yes ": Prefix_yes, # U,
"PrepCase_npr ": PrepCase_npr, # cz,
"PrepCase_pre ": PrepCase_pre, # U,
"PunctSide_ini ": PunctSide_ini, # U,
"PunctSide_fin ": PunctSide_fin, # U,
"PunctType_peri ": PunctType_peri, # U,
"PunctType_qest ": PunctType_qest, # U,
"PunctType_excl ": PunctType_excl, # U,
"PunctType_quot ": PunctType_quot, # U,
"PunctType_brck ": PunctType_brck, # U,
"PunctType_comm ": PunctType_comm, # U,
"PunctType_colo ": PunctType_colo, # U,
"PunctType_semi ": PunctType_semi, # U,
"PunctType_dash ": PunctType_dash, # U,
"Style_arch ": Style_arch, # cz, fi, U,
"Style_rare ": Style_rare, # cz, fi, U,
"Style_poet ": Style_poet, # cz, U,
"Style_norm ": Style_norm, # cz, U,
"Style_coll ": Style_coll, # cz, U,
"Style_vrnc ": Style_vrnc, # cz, U,
"Style_sing ": Style_sing, # cz, U,
"Style_expr ": Style_expr, # cz, U,
"Style_derg ": Style_derg, # cz, U,
"Style_vulg ": Style_vulg, # cz, U,
"Style_yes ": Style_yes, # fi, U,
"StyleVariant_styleShort ": StyleVariant_styleShort, # cz,
"StyleVariant_styleBound ": StyleVariant_styleBound, # cz, sl,
"VerbType_aux ": VerbType_aux, # U,
"VerbType_cop ": VerbType_cop, # U,
"VerbType_mod ": VerbType_mod, # U,
"VerbType_light ": VerbType_light, # U,
}
NAMES = [key for key, value in sorted(IDS.items(), key=lambda item: item[1])]
# Unfortunate hack here, to work around problem with long cpdef enum
# (which is generating an enormous amount of C++ in Cython 0.24+)
# We keep the enum cdef, and just make sure the names are available to Python
locals().update(IDS)