spaCy/website/usage/_processing-pipelines/_pipelines.jade

246 lines
10 KiB
Plaintext
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

//- 💫 DOCS > USAGE > PROCESSING PIPELINES > PIPELINES
p
| spaCy makes it very easy to create your own pipelines consisting of
| reusable components this includes spaCy's default tensorizer, tagger,
| parser and entity regcognizer, but also your own custom processing
| functions. A pipeline component can be added to an already existing
| #[code nlp] object, specified when initialising a #[code Language] class,
| or defined within a
| #[+a("/usage/saving-loading#models-generating") model package].
p
| When you load a model, spaCy first consults the model's
| #[+a("/usage/saving-loading#models-generating") meta.json]. The
| meta typically includes the model details, the ID of a language class,
| and an optional list of pipeline components. spaCy then does the
| following:
+aside-code("meta.json (excerpt)", "json").
{
"name": "example_model",
"lang": "en"
"description": "Example model for spaCy",
"pipeline": ["tensorizer", "tagger"]
}
+list("numbers")
+item
| Look up #[strong pipeline IDs] in the available
| #[strong pipeline factories].
+item
| Initialise the #[strong pipeline components] by calling their
| factories with the #[code Vocab] as an argument. This gives each
| factory and component access to the pipeline's shared data, like
| strings, morphology and annotation scheme.
+item
| Load the #[strong language class and data] for the given ID via
| #[+api("util.get_lang_class") #[code get_lang_class]].
+item
| Pass the path to the #[strong model data] to the #[code Language]
| class and return it.
p
| So when you call this...
+code.
nlp = spacy.load('en')
p
| ... the model tells spaCy to use the pipeline
| #[code.u-break ["tensorizer", "tagger", "parser", "ner"]]. spaCy will
| then look up each string in its internal factories registry and
| initialise the individual components. It'll then load
| #[code spacy.lang.en.English], pass it the path to the model's data
| directory, and return it for you to use as the #[code nlp] object.
p
| Fundamentally, a #[+a("/models") spaCy model] consists of three
| components: #[strong the weights], i.e. binary data loaded in from a
| directory, a #[strong pipeline] of functions called in order,
| and #[strong language data] like the tokenization rules and annotation
| scheme. All of this is specific to each model, and defined in the
| model's #[code meta.json] for example, a Spanish NER model requires
| different weights, language data and pipeline components than an English
| parsing and tagging model. This is also why the pipeline state is always
| held by the #[code Language] class.
| #[+api("spacy#load") #[code spacy.load]] puts this all together and
| returns an instance of #[code Language] with a pipeline set and access
| to the binary data:
+code("spacy.load under the hood").
lang = 'en'
pipeline = ['tensorizer', 'tagger', 'parser', 'ner']
data_path = 'path/to/en_core_web_sm/en_core_web_sm-2.0.0'
cls = spacy.util.get_lang_class(lang) # 1. get Language instance, e.g. English()
nlp = cls(pipeline=pipeline) # 2. initialise it with the pipeline
nlp.from_disk(model_data_path) # 3. load in the binary data
p
| When you call #[code nlp] on a text, spaCy will #[strong tokenize] it and
| then #[strong call each component] on the #[code Doc], in order.
| Since the model data is loaded, the components can access it to assign
| annotations to the #[code Doc] object, and subsequently to the
| #[code Token] and #[code Span] which are only views of the #[code Doc],
| and don't own any data themselves. All components return the modified
| document, which is then processed by the component next in the pipeline.
+code("The pipeline under the hood").
doc = nlp.make_doc(u'This is a sentence')
for proc in nlp.pipeline:
doc = proc(doc)
+h(3, "creating") Creating pipeline components and factories
p
| spaCy lets you customise the pipeline with your own components. Components
| are functions that receive a #[code Doc] object, modify and return it.
| If your component is stateful, you'll want to create a new one for each
| pipeline. You can do that by defining and registering a factory which
| receives the shared #[code Vocab] object and returns a component.
+h(4, "creating-component") Creating a component
p
| A component receives a #[code Doc] object and
| #[strong performs the actual processing] for example, using the current
| weights to make a prediction and set some annotation on the document. By
| adding a component to the pipeline, you'll get access to the #[code Doc]
| at any point #[strong during] processing instead of only being able to
| modify it afterwards.
+aside-code("Example").
def my_component(doc):
# do something to the doc here
return doc
+table(["Argument", "Type", "Description"])
+row
+cell #[code doc]
+cell #[code Doc]
+cell The #[code Doc] object processed by the previous component.
+row("foot")
+cell returns
+cell #[code Doc]
+cell The #[code Doc] object processed by this pipeline component.
p
| When creating a new #[code Language] class, you can pass it a list of
| pipeline component functions to execute in that order. You can also
| add it to an existing pipeline by modifying #[code nlp.pipeline] just
| be careful not to overwrite a pipeline or its components by accident!
+code.
# Create a new Language object with a pipeline
from spacy.language import Language
nlp = Language(pipeline=[my_component])
# Modify an existing pipeline
nlp = spacy.load('en')
nlp.pipeline.append(my_component)
+h(4, "creating-factory") Creating a factory
p
| A factory is a #[strong function that returns a pipeline component].
| It's called with the #[code Vocab] object, to give it access to the
| shared data between components for example, the strings, morphology,
| vectors or annotation scheme. Factories are useful for creating
| #[strong stateful components], especially ones which
| #[strong depend on shared data].
+aside-code("Example").
def my_factory(vocab):
# load some state
def my_component(doc):
# process the doc
return doc
return my_component
+table(["Argument", "Type", "Description"])
+row
+cell #[code vocab]
+cell #[code Vocab]
+cell
| Shared data between components, including strings, morphology,
| vectors etc.
+row("foot")
+cell returns
+cell callable
+cell The pipeline component.
p
| By creating a factory, you're essentially telling spaCy how to get the
| pipeline component #[strong once the vocab is available]. Factories need to
| be registered via #[+api("spacy#set_factory") #[code set_factory()]] and
| by assigning them a unique ID. This ID can be added to the pipeline as a
| string. When creating a pipeline, you're free to mix strings and
| callable components:
+code.
spacy.set_factory('my_factory', my_factory)
nlp = Language(pipeline=['my_factory', my_other_component])
p
| If spaCy comes across a string in the pipeline, it will try to resolve it
| by looking it up in the available factories. The factory will then be
| initialised with the #[code Vocab]. Providing factory names instead of
| callables also makes it easy to specify them in the model's
| #[+a("/usage/saving-loading#models-generating") meta.json]. If you're
| training your own model and want to use one of spaCy's default components,
| you won't have to worry about finding and implementing it either to use
| the default tagger, simply add #[code "tagger"] to the pipeline, and
| #[strong spaCy will know what to do].
+infobox("Important note")
| Because factories are #[strong resolved on initialisation] of the
| #[code Language] class, it's #[strong not possible] to add them to the
| pipeline afterwards, e.g. by modifying #[code nlp.pipeline]. This only
| works with individual component functions. To use factories, you need to
| create a new #[code Language] object, or generate a
| #[+a("/usage/training#models-generating") model package] with
| a custom pipeline.
+h(3, "disabling") Disabling pipeline components
p
| If you don't need a particular component of the pipeline for
| example, the tagger or the parser, you can disable loading it. This can
| sometimes make a big difference and improve loading speed. Disabled
| component names can be provided to #[+api("spacy#load") #[code spacy.load()]],
| #[+api("language#from_disk") #[code Language.from_disk()]] or the
| #[code nlp] object itself as a list:
+code.
nlp = spacy.load('en', disable['parser', 'tagger'])
nlp = English().from_disk('/model', disable=['tensorizer', 'ner'])
doc = nlp(u"I don't want parsed", disable=['parser'])
p
| Note that you can't write directly to #[code nlp.pipeline], as this list
| holds the #[em actual components], not the IDs. However, if you know the
| order of the components, you can still slice the list:
+code.
nlp = spacy.load('en')
nlp.pipeline = nlp.pipeline[:2] # only use the first two components
+infobox("Important note: disabling pipeline components")
.o-block
| Since spaCy v2.0 comes with better support for customising the
| processing pipeline components, the #[code parser], #[code tagger]
| and #[code entity] keyword arguments have been replaced with
| #[code disable], which takes a list of pipeline component names.
| This lets you disable both default and custom components when loading
| a model, or initialising a Language class via
| #[+api("language-from_disk") #[code from_disk]].
+code-new.
nlp = spacy.load('en', disable=['tagger', 'ner'])
doc = nlp(u"I don't want parsed", disable=['parser'])
+code-old.
nlp = spacy.load('en', tagger=False, entity=False)
doc = nlp(u"I don't want parsed", parse=False)