spaCy/spacy/serialize/packer.pyx

189 lines
5.6 KiB
Cython

# cython: profile=True
from __future__ import unicode_literals
from libc.stdint cimport uint32_t, int32_t
from libc.stdint cimport uint64_t
from libc.math cimport exp as c_exp
from libcpp.queue cimport priority_queue
from libcpp.pair cimport pair
from cymem.cymem cimport Address, Pool
from preshed.maps cimport PreshMap
from preshed.counter cimport PreshCounter
from ..attrs cimport ORTH, ID, SPACY, TAG, HEAD, DEP, ENT_IOB, ENT_TYPE
from ..tokens.doc cimport Doc
from ..vocab cimport Vocab
from ..structs cimport LexemeC
from ..typedefs cimport attr_t
from .bits cimport BitArray
from .huffman cimport HuffmanCodec
from os import path
import numpy
from .. import util
cimport cython
# Format
# - Total number of bytes in message (32 bit int) --- handled outside this
# - Number of words (32 bit int)
# - Words, terminating in an EOL symbol, huffman coded ~12 bits per word
# - Spaces 1 bit per word
# - Attributes:
# POS tag
# Head offset
# Dep label
# Entity IOB
# Entity tag
cdef class _BinaryCodec:
def encode(self, attr_t[:] msg, BitArray bits):
cdef int i
for i in range(len(msg)):
bits.append(msg[i])
def decode(self, BitArray bits, attr_t[:] msg):
cdef int i = 0
for bit in bits:
msg[i] = bit
i += 1
if i == len(msg):
break
def _gen_orths(Vocab vocab):
cdef attr_t orth
cdef size_t addr
for orth, addr in vocab._by_orth.items():
lex = <LexemeC*>addr
yield orth, c_exp(lex.prob)
def _gen_chars(Vocab vocab):
cdef attr_t orth
cdef size_t addr
char_weights = {chr(i): 1e-20 for i in range(256)}
cdef unicode string
cdef bytes char
cdef bytes utf8_str
for orth, addr in vocab._by_orth.items():
lex = <LexemeC*>addr
string = vocab.strings[lex.orth]
utf8_str = string.encode('utf8')
for char in utf8_str:
char_weights.setdefault(char, 0.0)
char_weights[char] += c_exp(lex.prob)
char_weights[b' '] += c_exp(lex.prob)
return char_weights.items()
cdef class Packer:
def __init__(self, Vocab vocab, attr_freqs, char_freqs=None):
if char_freqs is None:
char_freqs = _gen_chars(vocab)
self.vocab = vocab
self.orth_codec = HuffmanCodec(_gen_orths(vocab))
self.char_codec = HuffmanCodec(char_freqs)
codecs = []
attrs = []
for attr, freqs in sorted(attr_freqs):
if attr in (ORTH, ID, SPACY):
continue
codecs.append(HuffmanCodec(freqs))
attrs.append(attr)
self._codecs = tuple(codecs)
self.attrs = tuple(attrs)
@classmethod
def from_dir(cls, Vocab vocab, data_dir):
return cls(vocab, util.read_encoding_freqs(data_dir))
def pack(self, Doc doc):
bits = self._orth_encode(doc)
if bits is None:
bits = self._char_encode(doc)
cdef int i
if self.attrs:
array = doc.to_array(self.attrs)
for i, codec in enumerate(self._codecs):
codec.encode_int32(array[:, i], bits)
return bits
def unpack(self, BitArray bits):
bits.seek(0)
cdef int32_t length = bits.read32()
if length >= 0:
doc = self._orth_decode(bits, length)
else:
doc = self._char_decode(bits, -length)
array = numpy.zeros(shape=(len(doc), len(self._codecs)), dtype=numpy.int32)
for i, codec in enumerate(self._codecs):
codec.decode_int32(bits, array[:, i])
doc.from_array(self.attrs, array)
return doc
def _orth_encode(self, Doc doc):
cdef BitArray bits = BitArray()
cdef int32_t length = len(doc)
bits.extend(length, 32)
orths = doc.to_array([ORTH])
n_bits = self.orth_codec.encode_int32(orths[:, 0], bits)
if n_bits == 0:
return None
for token in doc:
bits.append(bool(token.whitespace_))
return bits
def _orth_decode(self, BitArray bits, n):
orths = numpy.ndarray(shape=(n,), dtype=numpy.int32)
self.orth_codec.decode_int32(bits, orths)
orths_and_spaces = zip(orths, bits)
cdef Doc doc = Doc(self.vocab, orths_and_spaces)
return doc
def _char_encode(self, Doc doc):
cdef bytes utf8_str = doc.string.encode('utf8')
cdef BitArray bits = BitArray()
cdef int32_t length = len(utf8_str)
# Signal chars with negative length
bits.extend(-length, 32)
self.char_codec.encode(utf8_str, bits)
cdef int i, j
for i in range(doc.length):
for j in range(doc.data[i].lex.length-1):
bits.append(False)
bits.append(True)
if doc.data[i].spacy:
bits.append(False)
return bits
def _char_decode(self, BitArray bits, n):
cdef bytearray utf8_str = bytearray(n)
self.char_codec.decode(bits, utf8_str)
cdef unicode string = utf8_str.decode('utf8')
cdef Doc tokens = Doc(self.vocab)
cdef int start = 0
cdef bint is_spacy
cdef int length = len(string)
cdef int i = 0
cdef bint is_end_token
for is_end_token in bits:
if is_end_token:
span = string[start:i+1]
lex = self.vocab.get(tokens.mem, span)
is_spacy = (i+1) < length and string[i+1] == u' '
tokens.push_back(lex, is_spacy)
start = i + 1 + is_spacy
i += 1
if i >= n:
break
return tokens