spaCy/examples/load_from_docbin.py

46 lines
1.4 KiB
Python

# coding: utf-8
"""
Example of loading previously parsed text using spaCy's DocBin class. The example
performs an entity count to show that the annotations are available.
For more details, see https://spacy.io/usage/saving-loading#docs
Installation:
python -m spacy download en_core_web_lg
Usage:
python examples/load_from_docbin.py en_core_web_lg RC_2015-03-9.spacy
"""
from __future__ import unicode_literals
import spacy
from spacy.tokens import DocBin
from timeit import default_timer as timer
from collections import Counter
EXAMPLE_PARSES_PATH = "RC_2015-03-9.spacy"
def main(model="en_core_web_lg", docbin_path=EXAMPLE_PARSES_PATH):
nlp = spacy.load(model)
print("Reading data from {}".format(docbin_path))
with open(docbin_path, "rb") as file_:
bytes_data = file_.read()
nr_word = 0
start_time = timer()
entities = Counter()
docbin = DocBin().from_bytes(bytes_data)
for doc in docbin.get_docs(nlp.vocab):
nr_word += len(doc)
entities.update((e.label_, e.text) for e in doc.ents)
end_time = timer()
msg = "Loaded {nr_word} words in {seconds} seconds ({wps} words per second)"
wps = nr_word / (end_time - start_time)
print(msg.format(nr_word=nr_word, seconds=end_time - start_time, wps=wps))
print("Most common entities:")
for (label, entity), freq in entities.most_common(30):
print(freq, entity, label)
if __name__ == "__main__":
import plac
plac.call(main)