mirror of https://github.com/explosion/spaCy.git
47 lines
1.2 KiB
Python
47 lines
1.2 KiB
Python
from typing import Optional
|
|
|
|
from thinc.api import Model
|
|
|
|
from .tokenizer_exceptions import TOKENIZER_EXCEPTIONS
|
|
from .stop_words import STOP_WORDS
|
|
from .lex_attrs import LEX_ATTRS
|
|
from .syntax_iterators import SYNTAX_ITERATORS
|
|
from .punctuation import TOKENIZER_INFIXES
|
|
from .lemmatizer import EnglishLemmatizer
|
|
from ...language import Language
|
|
from ...lookups import Lookups
|
|
|
|
|
|
class EnglishDefaults(Language.Defaults):
|
|
tokenizer_exceptions = TOKENIZER_EXCEPTIONS
|
|
infixes = TOKENIZER_INFIXES
|
|
lex_attr_getters = LEX_ATTRS
|
|
syntax_iterators = SYNTAX_ITERATORS
|
|
stop_words = STOP_WORDS
|
|
|
|
|
|
class English(Language):
|
|
lang = "en"
|
|
Defaults = EnglishDefaults
|
|
|
|
|
|
@English.factory(
|
|
"lemmatizer",
|
|
assigns=["token.lemma"],
|
|
default_config={"model": None, "mode": "rule", "lookups": None},
|
|
scores=["lemma_acc"],
|
|
default_score_weights={"lemma_acc": 1.0},
|
|
)
|
|
def make_lemmatizer(
|
|
nlp: Language,
|
|
model: Optional[Model],
|
|
name: str,
|
|
mode: str,
|
|
lookups: Optional[Lookups],
|
|
):
|
|
lookups = EnglishLemmatizer.load_lookups(nlp.lang, mode, lookups)
|
|
return EnglishLemmatizer(nlp.vocab, model, name, mode=mode, lookups=lookups)
|
|
|
|
|
|
__all__ = ["English"]
|