mirror of https://github.com/explosion/spaCy.git
226 lines
4.2 KiB
Python
226 lines
4.2 KiB
Python
import pytest
|
|
from spacy.tokens import Doc
|
|
from spacy.util import filter_spans
|
|
|
|
|
|
@pytest.fixture
|
|
def nl_sample(nl_vocab):
|
|
# TEXT :
|
|
# Haar vriend lacht luid. We kregen alweer ruzie toen we de supermarkt ingingen.
|
|
# Aan het begin van de supermarkt is al het fruit en de groentes. Uiteindelijk hebben we dan ook
|
|
# geen avondeten gekocht.
|
|
words = [
|
|
"Haar",
|
|
"vriend",
|
|
"lacht",
|
|
"luid",
|
|
".",
|
|
"We",
|
|
"kregen",
|
|
"alweer",
|
|
"ruzie",
|
|
"toen",
|
|
"we",
|
|
"de",
|
|
"supermarkt",
|
|
"ingingen",
|
|
".",
|
|
"Aan",
|
|
"het",
|
|
"begin",
|
|
"van",
|
|
"de",
|
|
"supermarkt",
|
|
"is",
|
|
"al",
|
|
"het",
|
|
"fruit",
|
|
"en",
|
|
"de",
|
|
"groentes",
|
|
".",
|
|
"Uiteindelijk",
|
|
"hebben",
|
|
"we",
|
|
"dan",
|
|
"ook",
|
|
"geen",
|
|
"avondeten",
|
|
"gekocht",
|
|
".",
|
|
]
|
|
heads = [
|
|
1,
|
|
2,
|
|
2,
|
|
2,
|
|
2,
|
|
6,
|
|
6,
|
|
6,
|
|
6,
|
|
13,
|
|
13,
|
|
12,
|
|
13,
|
|
6,
|
|
6,
|
|
17,
|
|
17,
|
|
24,
|
|
20,
|
|
20,
|
|
17,
|
|
24,
|
|
24,
|
|
24,
|
|
24,
|
|
27,
|
|
27,
|
|
24,
|
|
24,
|
|
36,
|
|
36,
|
|
36,
|
|
36,
|
|
36,
|
|
35,
|
|
36,
|
|
36,
|
|
36,
|
|
]
|
|
deps = [
|
|
"nmod:poss",
|
|
"nsubj",
|
|
"ROOT",
|
|
"advmod",
|
|
"punct",
|
|
"nsubj",
|
|
"ROOT",
|
|
"advmod",
|
|
"obj",
|
|
"mark",
|
|
"nsubj",
|
|
"det",
|
|
"obj",
|
|
"advcl",
|
|
"punct",
|
|
"case",
|
|
"det",
|
|
"obl",
|
|
"case",
|
|
"det",
|
|
"nmod",
|
|
"cop",
|
|
"advmod",
|
|
"det",
|
|
"ROOT",
|
|
"cc",
|
|
"det",
|
|
"conj",
|
|
"punct",
|
|
"advmod",
|
|
"aux",
|
|
"nsubj",
|
|
"advmod",
|
|
"advmod",
|
|
"det",
|
|
"obj",
|
|
"ROOT",
|
|
"punct",
|
|
]
|
|
pos = [
|
|
"PRON",
|
|
"NOUN",
|
|
"VERB",
|
|
"ADJ",
|
|
"PUNCT",
|
|
"PRON",
|
|
"VERB",
|
|
"ADV",
|
|
"NOUN",
|
|
"SCONJ",
|
|
"PRON",
|
|
"DET",
|
|
"NOUN",
|
|
"NOUN",
|
|
"PUNCT",
|
|
"ADP",
|
|
"DET",
|
|
"NOUN",
|
|
"ADP",
|
|
"DET",
|
|
"NOUN",
|
|
"AUX",
|
|
"ADV",
|
|
"DET",
|
|
"NOUN",
|
|
"CCONJ",
|
|
"DET",
|
|
"NOUN",
|
|
"PUNCT",
|
|
"ADJ",
|
|
"AUX",
|
|
"PRON",
|
|
"ADV",
|
|
"ADV",
|
|
"DET",
|
|
"NOUN",
|
|
"VERB",
|
|
"PUNCT",
|
|
]
|
|
return Doc(nl_vocab, words=words, heads=heads, deps=deps, pos=pos)
|
|
|
|
|
|
@pytest.fixture
|
|
def nl_reference_chunking():
|
|
# Using frog https://github.com/LanguageMachines/frog/ we obtain the following NOUN-PHRASES:
|
|
return [
|
|
"haar vriend",
|
|
"we",
|
|
"ruzie",
|
|
"we",
|
|
"de supermarkt",
|
|
"het begin",
|
|
"de supermarkt",
|
|
"het fruit",
|
|
"de groentes",
|
|
"we",
|
|
"geen avondeten",
|
|
]
|
|
|
|
|
|
def test_need_dep(nl_tokenizer):
|
|
"""
|
|
Test that noun_chunks raises Value Error for 'nl' language if Doc is not parsed.
|
|
"""
|
|
txt = "Haar vriend lacht luid."
|
|
doc = nl_tokenizer(txt)
|
|
|
|
with pytest.raises(ValueError):
|
|
list(doc.noun_chunks)
|
|
|
|
|
|
def test_chunking(nl_sample, nl_reference_chunking):
|
|
"""
|
|
Test the noun chunks of a sample text. Uses a sample.
|
|
The sample text simulates a Doc object as would be produced by nl_core_news_md.
|
|
"""
|
|
chunks = [s.text.lower() for s in nl_sample.noun_chunks]
|
|
assert chunks == nl_reference_chunking
|
|
|
|
|
|
@pytest.mark.issue(10846)
|
|
def test_no_overlapping_chunks(nl_vocab):
|
|
# fmt: off
|
|
doc = Doc(
|
|
nl_vocab,
|
|
words=["Dit", "programma", "wordt", "beschouwd", "als", "'s", "werelds", "eerste", "computerprogramma"],
|
|
deps=["det", "nsubj:pass", "aux:pass", "ROOT", "mark", "det", "fixed", "amod", "xcomp"],
|
|
heads=[1, 3, 3, 3, 8, 8, 5, 8, 3],
|
|
pos=["DET", "NOUN", "AUX", "VERB", "SCONJ", "DET", "NOUN", "ADJ", "NOUN"],
|
|
)
|
|
# fmt: on
|
|
chunks = list(doc.noun_chunks)
|
|
assert filter_spans(chunks) == chunks
|