spaCy/spacy/cli/train.py

143 lines
5.3 KiB
Python

# coding: utf8
from __future__ import unicode_literals, division, print_function
import json
from collections import defaultdict
import cytoolz
from pathlib import Path
import dill
from ..tokens.doc import Doc
from ..scorer import Scorer
from ..gold import GoldParse, merge_sents
from ..gold import read_json_file as read_gold_json
from ..util import prints
from .. import util
from .. import displacy
def train(language, output_dir, train_data, dev_data, n_iter, n_sents,
use_gpu, tagger, parser, ner, parser_L1):
output_path = util.ensure_path(output_dir)
train_path = util.ensure_path(train_data)
dev_path = util.ensure_path(dev_data)
if not output_path.exists():
prints(output_path, title="Output directory not found", exits=True)
if not train_path.exists():
prints(train_path, title="Training data not found", exits=True)
if dev_path and not dev_path.exists():
prints(dev_path, title="Development data not found", exits=True)
lang = util.get_lang_class(language)
parser_cfg = {
'pseudoprojective': True,
'L1': parser_L1,
'n_iter': n_iter,
'lang': language,
'features': lang.Defaults.parser_features}
entity_cfg = {
'n_iter': n_iter,
'lang': language,
'features': lang.Defaults.entity_features}
tagger_cfg = {
'n_iter': n_iter,
'lang': language,
'features': lang.Defaults.tagger_features}
gold_train = list(read_gold_json(train_path, limit=n_sents))
gold_dev = list(read_gold_json(dev_path, limit=n_sents)) if dev_path else None
train_model(lang, gold_train, gold_dev, output_path, n_iter, use_gpu=use_gpu)
if gold_dev:
scorer = evaluate(lang, gold_dev, output_path)
print_results(scorer)
def train_config(config):
config_path = util.ensure_path(config)
if not config_path.is_file():
prints(config_path, title="Config file not found", exits=True)
config = json.load(config_path)
for setting in []:
if setting not in config.keys():
prints("%s not found in config file." % setting, title="Missing setting")
def train_model(Language, train_data, dev_data, output_path, n_iter, **cfg):
print("Itn.\tDep. Loss\tUAS\tNER F.\tTag %\tToken %")
nlp = Language(pipeline=['token_vectors', 'tags', 'dependencies'])
dropout = util.env_opt('dropout', 0.0)
# TODO: Get spaCy using Thinc's trainer and optimizer
with nlp.begin_training(train_data, **cfg) as (trainer, optimizer):
for itn, epoch in enumerate(trainer.epochs(n_iter, gold_preproc=True)):
losses = defaultdict(float)
to_render = []
for i, (docs, golds) in enumerate(epoch):
state = nlp.update(docs, golds, drop=dropout, sgd=optimizer)
losses['dep_loss'] += state.get('parser_loss', 0.0)
losses['tag_loss'] += state.get('tag_loss', 0.0)
to_render.insert(0, nlp(docs[-1].text))
to_render[0].user_data['title'] = "Batch %d" % i
with Path('/tmp/entities.html').open('w') as file_:
html = displacy.render(to_render[:5], style='ent', page=True)
file_.write(html)
with Path('/tmp/parses.html').open('w') as file_:
html = displacy.render(to_render[:5], style='dep', page=True)
file_.write(html)
if dev_data:
with nlp.use_params(optimizer.averages):
dev_scores = trainer.evaluate(dev_data).scores
else:
dev_scores = defaultdict(float)
print_progress(itn, losses, dev_scores)
with (output_path / 'model.bin').open('wb') as file_:
dill.dump(nlp, file_, -1)
#nlp.to_disk(output_path, tokenizer=False)
def evaluate(Language, gold_tuples, path):
with (path / 'model.bin').open('rb') as file_:
nlp = dill.load(file_)
# TODO:
# 1. This code is duplicate with spacy.train.Trainer.evaluate
# 2. There's currently a semantic difference between pipe and
# not pipe! It matters whether we batch the inputs. Must fix!
all_docs = []
all_golds = []
for raw_text, paragraph_tuples in dev_sents:
if gold_preproc:
raw_text = None
else:
paragraph_tuples = merge_sents(paragraph_tuples)
docs = self.make_docs(raw_text, paragraph_tuples)
golds = self.make_golds(docs, paragraph_tuples)
all_docs.extend(docs)
all_golds.extend(golds)
scorer = Scorer()
for doc, gold in zip(self.nlp.pipe(all_docs), all_golds):
scorer.score(doc, gold)
return scorer
def print_progress(itn, losses, dev_scores):
# TODO: Fix!
scores = {}
for col in ['dep_loss', 'tag_loss', 'uas', 'tags_acc', 'token_acc', 'ents_f']:
scores[col] = 0.0
scores.update(losses)
scores.update(dev_scores)
tpl = '{:d}\t{dep_loss:.3f}\t{tag_loss:.3f}\t{uas:.3f}\t{ents_f:.3f}\t{tags_acc:.3f}\t{token_acc:.3f}'
print(tpl.format(itn, **scores))
def print_results(scorer):
results = {
'TOK': '%.2f' % scorer.token_acc,
'POS': '%.2f' % scorer.tags_acc,
'UAS': '%.2f' % scorer.uas,
'LAS': '%.2f' % scorer.las,
'NER P': '%.2f' % scorer.ents_p,
'NER R': '%.2f' % scorer.ents_r,
'NER F': '%.2f' % scorer.ents_f}
util.print_table(results, title="Results")