spaCy/spacy/pipeline/pipe.pyx

260 lines
8.9 KiB
Cython

# cython: infer_types=True, profile=True, binding=True
import srsly
from ..tokens.doc cimport Doc
from ..util import create_default_optimizer
from ..errors import Errors
from .. import util
class Pipe:
"""This class is a base class and not instantiated directly. Trainable
pipeline components like the EntityRecognizer or TextCategorizer inherit
from it and it defines the interface that components should follow to
function as trainable components in a spaCy pipeline.
DOCS: https://spacy.io/api/pipe
"""
name = None
def __init__(self, vocab, model, name, **cfg):
"""Initialize a pipeline component.
vocab (Vocab): The shared vocabulary.
model (thinc.api.Model): The Thinc Model powering the pipeline component.
name (str): The component instance name.
**cfg: Additonal settings and config parameters.
DOCS: https://spacy.io/api/pipe#init
"""
raise NotImplementedError
def __call__(self, Doc doc):
"""Add context-sensitive embeddings to the Doc.tensor attribute.
docs (Doc): The Doc to preocess.
RETURNS (Doc): The processed Doc.
DOCS: https://spacy.io/api/pipe#call
"""
scores = self.predict([doc])
self.set_annotations([doc], scores)
return doc
def pipe(self, stream, *, batch_size=128):
"""Apply the pipe to a stream of documents. This usually happens under
the hood when the nlp object is called on a text and all components are
applied to the Doc.
stream (Iterable[Doc]): A stream of documents.
batch_size (int): The number of documents to buffer.
YIELDS (Doc): Processed documents in order.
DOCS: https://spacy.io/api/pipe#pipe
"""
for docs in util.minibatch(stream, size=batch_size):
scores = self.predict(docs)
self.set_annotations(docs, scores)
yield from docs
def predict(self, docs):
"""Apply the pipeline's model to a batch of docs, without modifying them.
Returns a single tensor for a batch of documents.
docs (Iterable[Doc]): The documents to predict.
RETURNS: Vector representations for each token in the documents.
DOCS: https://spacy.io/api/pipe#predict
"""
raise NotImplementedError
def set_annotations(self, docs, scores):
"""Modify a batch of documents, using pre-computed scores.
docs (Iterable[Doc]): The documents to modify.
tokvecses: The tensors to set, produced by Pipe.predict.
DOCS: https://spacy.io/api/pipe#predict
"""
raise NotImplementedError
def rehearse(self, examples, *, sgd=None, losses=None, **config):
"""Perform a "rehearsal" update from a batch of data. Rehearsal updates
teach the current model to make predictions similar to an initial model,
to try to address the "catastrophic forgetting" problem. This feature is
experimental.
examples (Iterable[Example]): A batch of Example objects.
drop (float): The dropout rate.
sgd (thinc.api.Optimizer): The optimizer.
losses (Dict[str, float]): Optional record of the loss during training.
Updated using the component name as the key.
RETURNS (Dict[str, float]): The updated losses dictionary.
DOCS: https://spacy.io/api/pipe#rehearse
"""
pass
def get_loss(self, examples, scores):
"""Find the loss and gradient of loss for the batch of documents and
their predicted scores.
examples (Iterable[Examples]): The batch of examples.
scores: Scores representing the model's predictions.
RETUTNRS (Tuple[float, float]): The loss and the gradient.
DOCS: https://spacy.io/api/pipe#get_loss
"""
raise NotImplementedError
def add_label(self, label):
"""Add an output label, to be predicted by the model. It's possible to
extend pretrained models with new labels, but care should be taken to
avoid the "catastrophic forgetting" problem.
label (str): The label to add.
RETURNS (int): 0 if label is already present, otherwise 1.
DOCS: https://spacy.io/api/pipe#add_label
"""
raise NotImplementedError
def create_optimizer(self):
"""Create an optimizer for the pipeline component.
RETURNS (thinc.api.Optimizer): The optimizer.
DOCS: https://spacy.io/api/pipe#create_optimizer
"""
return create_default_optimizer()
def begin_training(self, get_examples=lambda: [], *, pipeline=None, sgd=None):
"""Initialize the pipe for training, using data examples if available.
get_examples (Callable[[], Iterable[Example]]): Optional function that
returns gold-standard Example objects.
pipeline (List[Tuple[str, Callable]]): Optional list of pipeline
components that this component is part of. Corresponds to
nlp.pipeline.
sgd (thinc.api.Optimizer): Optional optimizer. Will be created with
create_optimizer if it doesn't exist.
RETURNS (thinc.api.Optimizer): The optimizer.
DOCS: https://spacy.io/api/pipe#begin_training
"""
self.model.initialize()
if sgd is None:
sgd = self.create_optimizer()
return sgd
def set_output(self, nO):
if self.model.has_dim("nO") is not False:
self.model.set_dim("nO", nO)
if self.model.has_ref("output_layer"):
self.model.get_ref("output_layer").set_dim("nO", nO)
def use_params(self, params):
"""Modify the pipe's model, to use the given parameter values. At the
end of the context, the original parameters are restored.
params (dict): The parameter values to use in the model.
DOCS: https://spacy.io/api/pipe#use_params
"""
with self.model.use_params(params):
yield
def score(self, examples, **kwargs):
"""Score a batch of examples.
examples (Iterable[Example]): The examples to score.
RETURNS (Dict[str, Any]): The scores.
DOCS: https://spacy.io/api/pipe#score
"""
return {}
def to_bytes(self, exclude=tuple()):
"""Serialize the pipe to a bytestring.
exclude (Iterable[str]): String names of serialization fields to exclude.
RETURNS (bytes): The serialized object.
DOCS: https://spacy.io/api/pipe#to_bytes
"""
serialize = {}
serialize["cfg"] = lambda: srsly.json_dumps(self.cfg)
serialize["model"] = self.model.to_bytes
if hasattr(self, "vocab"):
serialize["vocab"] = self.vocab.to_bytes
return util.to_bytes(serialize, exclude)
def from_bytes(self, bytes_data, exclude=tuple()):
"""Load the pipe from a bytestring.
exclude (Iterable[str]): String names of serialization fields to exclude.
RETURNS (Pipe): The loaded object.
DOCS: https://spacy.io/api/pipe#from_bytes
"""
def load_model(b):
try:
self.model.from_bytes(b)
except AttributeError:
raise ValueError(Errors.E149)
deserialize = {}
if hasattr(self, "vocab"):
deserialize["vocab"] = lambda b: self.vocab.from_bytes(b)
deserialize["cfg"] = lambda b: self.cfg.update(srsly.json_loads(b))
deserialize["model"] = load_model
util.from_bytes(bytes_data, deserialize, exclude)
return self
def to_disk(self, path, exclude=tuple()):
"""Serialize the pipe to disk.
path (str / Path): Path to a directory.
exclude (Iterable[str]): String names of serialization fields to exclude.
DOCS: https://spacy.io/api/pipe#to_disk
"""
serialize = {}
serialize["cfg"] = lambda p: srsly.write_json(p, self.cfg)
serialize["vocab"] = lambda p: self.vocab.to_disk(p)
serialize["model"] = lambda p: self.model.to_disk(p)
util.to_disk(path, serialize, exclude)
def from_disk(self, path, exclude=tuple()):
"""Load the pipe from disk.
path (str / Path): Path to a directory.
exclude (Iterable[str]): String names of serialization fields to exclude.
RETURNS (Pipe): The loaded object.
DOCS: https://spacy.io/api/pipe#from_disk
"""
def load_model(p):
try:
self.model.from_bytes(p.open("rb").read())
except AttributeError:
raise ValueError(Errors.E149)
deserialize = {}
deserialize["vocab"] = lambda p: self.vocab.from_disk(p)
deserialize["cfg"] = lambda p: self.cfg.update(deserialize_config(p))
deserialize["model"] = load_model
util.from_disk(path, deserialize, exclude)
return self
def deserialize_config(path):
if path.exists():
return srsly.read_json(path)
else:
return {}