mirror of https://github.com/explosion/spaCy.git
977 lines
32 KiB
Python
977 lines
32 KiB
Python
# coding: utf8
|
|
from __future__ import unicode_literals
|
|
|
|
import numpy
|
|
from thinc.v2v import Model, Maxout, Softmax, Affine, ReLu
|
|
from thinc.i2v import HashEmbed, StaticVectors
|
|
from thinc.t2t import ExtractWindow, ParametricAttention
|
|
from thinc.t2v import Pooling, sum_pool, mean_pool
|
|
from thinc.misc import Residual
|
|
from thinc.misc import LayerNorm as LN
|
|
from thinc.misc import FeatureExtracter
|
|
from thinc.api import add, layerize, chain, clone, concatenate, with_flatten
|
|
from thinc.api import with_getitem, flatten_add_lengths
|
|
from thinc.api import uniqued, wrap, noop
|
|
from thinc.api import with_square_sequences
|
|
from thinc.linear.linear import LinearModel
|
|
from thinc.neural.ops import NumpyOps, CupyOps
|
|
from thinc.neural.util import get_array_module, copy_array
|
|
from thinc.neural.optimizers import Adam
|
|
|
|
from thinc import describe
|
|
from thinc.describe import Dimension, Synapses, Biases, Gradient
|
|
from thinc.neural._classes.affine import _set_dimensions_if_needed
|
|
import thinc.extra.load_nlp
|
|
|
|
from .attrs import ID, ORTH, LOWER, NORM, PREFIX, SUFFIX, SHAPE
|
|
from .errors import Errors, user_warning, Warnings
|
|
from . import util
|
|
|
|
try:
|
|
import torch.nn
|
|
from thinc.extra.wrappers import PyTorchWrapperRNN
|
|
except ImportError:
|
|
torch = None
|
|
|
|
VECTORS_KEY = "spacy_pretrained_vectors"
|
|
|
|
|
|
def cosine(vec1, vec2):
|
|
xp = get_array_module(vec1)
|
|
norm1 = xp.linalg.norm(vec1)
|
|
norm2 = xp.linalg.norm(vec2)
|
|
if norm1 == 0.0 or norm2 == 0.0:
|
|
return 0
|
|
else:
|
|
return vec1.dot(vec2) / (norm1 * norm2)
|
|
|
|
|
|
def create_default_optimizer(ops, **cfg):
|
|
learn_rate = util.env_opt("learn_rate", 0.001)
|
|
beta1 = util.env_opt("optimizer_B1", 0.9)
|
|
beta2 = util.env_opt("optimizer_B2", 0.999)
|
|
eps = util.env_opt("optimizer_eps", 1e-8)
|
|
L2 = util.env_opt("L2_penalty", 1e-6)
|
|
max_grad_norm = util.env_opt("grad_norm_clip", 1.0)
|
|
optimizer = Adam(ops, learn_rate, L2=L2, beta1=beta1, beta2=beta2, eps=eps)
|
|
optimizer.max_grad_norm = max_grad_norm
|
|
optimizer.device = ops.device
|
|
return optimizer
|
|
|
|
|
|
@layerize
|
|
def _flatten_add_lengths(seqs, pad=0, drop=0.0):
|
|
ops = Model.ops
|
|
lengths = ops.asarray([len(seq) for seq in seqs], dtype="i")
|
|
|
|
def finish_update(d_X, sgd=None):
|
|
return ops.unflatten(d_X, lengths, pad=pad)
|
|
|
|
X = ops.flatten(seqs, pad=pad)
|
|
return (X, lengths), finish_update
|
|
|
|
|
|
def _zero_init(model):
|
|
def _zero_init_impl(self, *args, **kwargs):
|
|
self.W.fill(0)
|
|
|
|
model.on_init_hooks.append(_zero_init_impl)
|
|
if model.W is not None:
|
|
model.W.fill(0.0)
|
|
return model
|
|
|
|
|
|
def with_cpu(ops, model):
|
|
"""Wrap a model that should run on CPU, transferring inputs and outputs
|
|
as necessary."""
|
|
model.to_cpu()
|
|
|
|
def with_cpu_forward(inputs, drop=0.0):
|
|
cpu_outputs, backprop = model.begin_update(_to_cpu(inputs), drop=drop)
|
|
gpu_outputs = _to_device(ops, cpu_outputs)
|
|
|
|
def with_cpu_backprop(d_outputs, sgd=None):
|
|
cpu_d_outputs = _to_cpu(d_outputs)
|
|
return backprop(cpu_d_outputs, sgd=sgd)
|
|
|
|
return gpu_outputs, with_cpu_backprop
|
|
|
|
return wrap(with_cpu_forward, model)
|
|
|
|
|
|
def _to_cpu(X):
|
|
if isinstance(X, numpy.ndarray):
|
|
return X
|
|
elif isinstance(X, tuple):
|
|
return tuple([_to_cpu(x) for x in X])
|
|
elif isinstance(X, list):
|
|
return [_to_cpu(x) for x in X]
|
|
elif hasattr(X, "get"):
|
|
return X.get()
|
|
else:
|
|
return X
|
|
|
|
|
|
def _to_device(ops, X):
|
|
if isinstance(X, tuple):
|
|
return tuple([_to_device(ops, x) for x in X])
|
|
elif isinstance(X, list):
|
|
return [_to_device(ops, x) for x in X]
|
|
else:
|
|
return ops.asarray(X)
|
|
|
|
|
|
class extract_ngrams(Model):
|
|
def __init__(self, ngram_size, attr=LOWER):
|
|
Model.__init__(self)
|
|
self.ngram_size = ngram_size
|
|
self.attr = attr
|
|
|
|
def begin_update(self, docs, drop=0.0):
|
|
batch_keys = []
|
|
batch_vals = []
|
|
for doc in docs:
|
|
unigrams = doc.to_array([self.attr])
|
|
ngrams = [unigrams]
|
|
for n in range(2, self.ngram_size + 1):
|
|
ngrams.append(self.ops.ngrams(n, unigrams))
|
|
keys = self.ops.xp.concatenate(ngrams)
|
|
keys, vals = self.ops.xp.unique(keys, return_counts=True)
|
|
batch_keys.append(keys)
|
|
batch_vals.append(vals)
|
|
# The dtype here matches what thinc is expecting -- which differs per
|
|
# platform (by int definition). This should be fixed once the problem
|
|
# is fixed on Thinc's side.
|
|
lengths = self.ops.asarray(
|
|
[arr.shape[0] for arr in batch_keys], dtype=numpy.int_
|
|
)
|
|
batch_keys = self.ops.xp.concatenate(batch_keys)
|
|
batch_vals = self.ops.asarray(self.ops.xp.concatenate(batch_vals), dtype="f")
|
|
return (batch_keys, batch_vals, lengths), None
|
|
|
|
|
|
@describe.on_data(
|
|
_set_dimensions_if_needed, lambda model, X, y: model.init_weights(model)
|
|
)
|
|
@describe.attributes(
|
|
nI=Dimension("Input size"),
|
|
nF=Dimension("Number of features"),
|
|
nO=Dimension("Output size"),
|
|
nP=Dimension("Maxout pieces"),
|
|
W=Synapses("Weights matrix", lambda obj: (obj.nF, obj.nO, obj.nP, obj.nI)),
|
|
b=Biases("Bias vector", lambda obj: (obj.nO, obj.nP)),
|
|
pad=Synapses(
|
|
"Pad",
|
|
lambda obj: (1, obj.nF, obj.nO, obj.nP),
|
|
lambda M, ops: ops.normal_init(M, 1.0),
|
|
),
|
|
d_W=Gradient("W"),
|
|
d_pad=Gradient("pad"),
|
|
d_b=Gradient("b"),
|
|
)
|
|
class PrecomputableAffine(Model):
|
|
def __init__(self, nO=None, nI=None, nF=None, nP=None, **kwargs):
|
|
Model.__init__(self, **kwargs)
|
|
self.nO = nO
|
|
self.nP = nP
|
|
self.nI = nI
|
|
self.nF = nF
|
|
|
|
def begin_update(self, X, drop=0.0):
|
|
Yf = self.ops.gemm(
|
|
X, self.W.reshape((self.nF * self.nO * self.nP, self.nI)), trans2=True
|
|
)
|
|
Yf = Yf.reshape((Yf.shape[0], self.nF, self.nO, self.nP))
|
|
Yf = self._add_padding(Yf)
|
|
|
|
def backward(dY_ids, sgd=None):
|
|
dY, ids = dY_ids
|
|
dY, ids = self._backprop_padding(dY, ids)
|
|
Xf = X[ids]
|
|
Xf = Xf.reshape((Xf.shape[0], self.nF * self.nI))
|
|
|
|
self.d_b += dY.sum(axis=0)
|
|
dY = dY.reshape((dY.shape[0], self.nO * self.nP))
|
|
|
|
Wopfi = self.W.transpose((1, 2, 0, 3))
|
|
Wopfi = self.ops.xp.ascontiguousarray(Wopfi)
|
|
Wopfi = Wopfi.reshape((self.nO * self.nP, self.nF * self.nI))
|
|
dXf = self.ops.gemm(dY.reshape((dY.shape[0], self.nO * self.nP)), Wopfi)
|
|
|
|
# Reuse the buffer
|
|
dWopfi = Wopfi
|
|
dWopfi.fill(0.0)
|
|
self.ops.gemm(dY, Xf, out=dWopfi, trans1=True)
|
|
dWopfi = dWopfi.reshape((self.nO, self.nP, self.nF, self.nI))
|
|
# (o, p, f, i) --> (f, o, p, i)
|
|
self.d_W += dWopfi.transpose((2, 0, 1, 3))
|
|
|
|
if sgd is not None:
|
|
sgd(self._mem.weights, self._mem.gradient, key=self.id)
|
|
return dXf.reshape((dXf.shape[0], self.nF, self.nI))
|
|
|
|
return Yf, backward
|
|
|
|
def _add_padding(self, Yf):
|
|
Yf_padded = self.ops.xp.vstack((self.pad, Yf))
|
|
return Yf_padded
|
|
|
|
def _backprop_padding(self, dY, ids):
|
|
# (1, nF, nO, nP) += (nN, nF, nO, nP) where IDs (nN, nF) < 0
|
|
mask = ids < 0.0
|
|
mask = mask.sum(axis=1)
|
|
d_pad = dY * mask.reshape((ids.shape[0], 1, 1))
|
|
self.d_pad += d_pad.sum(axis=0)
|
|
return dY, ids
|
|
|
|
@staticmethod
|
|
def init_weights(model):
|
|
"""This is like the 'layer sequential unit variance', but instead
|
|
of taking the actual inputs, we randomly generate whitened data.
|
|
|
|
Why's this all so complicated? We have a huge number of inputs,
|
|
and the maxout unit makes guessing the dynamics tricky. Instead
|
|
we set the maxout weights to values that empirically result in
|
|
whitened outputs given whitened inputs.
|
|
"""
|
|
if (model.W ** 2).sum() != 0.0:
|
|
return
|
|
ops = model.ops
|
|
xp = ops.xp
|
|
ops.normal_init(model.W, model.nF * model.nI, inplace=True)
|
|
|
|
ids = ops.allocate((5000, model.nF), dtype="f")
|
|
ids += xp.random.uniform(0, 1000, ids.shape)
|
|
ids = ops.asarray(ids, dtype="i")
|
|
tokvecs = ops.allocate((5000, model.nI), dtype="f")
|
|
tokvecs += xp.random.normal(loc=0.0, scale=1.0, size=tokvecs.size).reshape(
|
|
tokvecs.shape
|
|
)
|
|
|
|
def predict(ids, tokvecs):
|
|
# nS ids. nW tokvecs. Exclude the padding array.
|
|
hiddens = model(tokvecs[:-1]) # (nW, f, o, p)
|
|
vectors = model.ops.allocate((ids.shape[0], model.nO * model.nP), dtype="f")
|
|
# need nS vectors
|
|
hiddens = hiddens.reshape(
|
|
(hiddens.shape[0] * model.nF, model.nO * model.nP)
|
|
)
|
|
model.ops.scatter_add(vectors, ids.flatten(), hiddens)
|
|
vectors = vectors.reshape((vectors.shape[0], model.nO, model.nP))
|
|
vectors += model.b
|
|
vectors = model.ops.asarray(vectors)
|
|
if model.nP >= 2:
|
|
return model.ops.maxout(vectors)[0]
|
|
else:
|
|
return vectors * (vectors >= 0)
|
|
|
|
tol_var = 0.01
|
|
tol_mean = 0.01
|
|
t_max = 10
|
|
t_i = 0
|
|
for t_i in range(t_max):
|
|
acts1 = predict(ids, tokvecs)
|
|
var = model.ops.xp.var(acts1)
|
|
mean = model.ops.xp.mean(acts1)
|
|
if abs(var - 1.0) >= tol_var:
|
|
model.W /= model.ops.xp.sqrt(var)
|
|
elif abs(mean) >= tol_mean:
|
|
model.b -= mean
|
|
else:
|
|
break
|
|
|
|
|
|
def link_vectors_to_models(vocab):
|
|
vectors = vocab.vectors
|
|
if vectors.name is None:
|
|
vectors.name = VECTORS_KEY
|
|
if vectors.data.size != 0:
|
|
user_warning(Warnings.W020.format(shape=vectors.data.shape))
|
|
ops = Model.ops
|
|
for word in vocab:
|
|
if word.orth in vectors.key2row:
|
|
word.rank = vectors.key2row[word.orth]
|
|
else:
|
|
word.rank = 0
|
|
data = ops.asarray(vectors.data)
|
|
# Set an entry here, so that vectors are accessed by StaticVectors
|
|
# (unideal, I know)
|
|
key = (ops.device, vectors.name)
|
|
if key in thinc.extra.load_nlp.VECTORS:
|
|
if thinc.extra.load_nlp.VECTORS[key].shape != data.shape:
|
|
# This is a hack to avoid the problem in #3853. Maybe we should
|
|
# print a warning as well?
|
|
old_name = vectors.name
|
|
new_name = vectors.name + "_%d" % data.shape[0]
|
|
user_warning(Warnings.W019.format(old=old_name, new=new_name))
|
|
vectors.name = new_name
|
|
key = (ops.device, vectors.name)
|
|
thinc.extra.load_nlp.VECTORS[key] = data
|
|
|
|
|
|
def PyTorchBiLSTM(nO, nI, depth, dropout=0.2):
|
|
if depth == 0:
|
|
return layerize(noop())
|
|
model = torch.nn.LSTM(nI, nO // 2, depth, bidirectional=True, dropout=dropout)
|
|
return with_square_sequences(PyTorchWrapperRNN(model))
|
|
|
|
|
|
def Tok2Vec(width, embed_size, **kwargs):
|
|
pretrained_vectors = kwargs.get("pretrained_vectors", None)
|
|
cnn_maxout_pieces = kwargs.get("cnn_maxout_pieces", 3)
|
|
subword_features = kwargs.get("subword_features", True)
|
|
char_embed = kwargs.get("char_embed", False)
|
|
if char_embed:
|
|
subword_features = False
|
|
conv_depth = kwargs.get("conv_depth", 4)
|
|
bilstm_depth = kwargs.get("bilstm_depth", 0)
|
|
cols = [ID, NORM, PREFIX, SUFFIX, SHAPE, ORTH]
|
|
with Model.define_operators(
|
|
{">>": chain, "|": concatenate, "**": clone, "+": add, "*": reapply}
|
|
):
|
|
norm = HashEmbed(width, embed_size, column=cols.index(NORM), name="embed_norm")
|
|
if subword_features:
|
|
prefix = HashEmbed(
|
|
width, embed_size // 2, column=cols.index(PREFIX), name="embed_prefix"
|
|
)
|
|
suffix = HashEmbed(
|
|
width, embed_size // 2, column=cols.index(SUFFIX), name="embed_suffix"
|
|
)
|
|
shape = HashEmbed(
|
|
width, embed_size // 2, column=cols.index(SHAPE), name="embed_shape"
|
|
)
|
|
else:
|
|
prefix, suffix, shape = (None, None, None)
|
|
if pretrained_vectors is not None:
|
|
glove = StaticVectors(pretrained_vectors, width, column=cols.index(ID))
|
|
|
|
if subword_features:
|
|
embed = uniqued(
|
|
(glove | norm | prefix | suffix | shape)
|
|
>> LN(Maxout(width, width * 5, pieces=3)),
|
|
column=cols.index(ORTH),
|
|
)
|
|
else:
|
|
embed = uniqued(
|
|
(glove | norm) >> LN(Maxout(width, width * 2, pieces=3)),
|
|
column=cols.index(ORTH),
|
|
)
|
|
elif subword_features:
|
|
embed = uniqued(
|
|
(norm | prefix | suffix | shape)
|
|
>> LN(Maxout(width, width * 4, pieces=3)),
|
|
column=cols.index(ORTH),
|
|
)
|
|
elif char_embed:
|
|
embed = concatenate_lists(
|
|
CharacterEmbed(nM=64, nC=8),
|
|
FeatureExtracter(cols) >> with_flatten(norm),
|
|
)
|
|
reduce_dimensions = LN(
|
|
Maxout(width, 64 * 8 + width, pieces=cnn_maxout_pieces)
|
|
)
|
|
else:
|
|
embed = norm
|
|
|
|
convolution = Residual(
|
|
ExtractWindow(nW=1)
|
|
>> LN(Maxout(width, width * 3, pieces=cnn_maxout_pieces))
|
|
)
|
|
if char_embed:
|
|
tok2vec = embed >> with_flatten(
|
|
reduce_dimensions >> convolution ** conv_depth, pad=conv_depth
|
|
)
|
|
else:
|
|
tok2vec = FeatureExtracter(cols) >> with_flatten(
|
|
embed >> convolution ** conv_depth, pad=conv_depth
|
|
)
|
|
|
|
if bilstm_depth >= 1:
|
|
tok2vec = tok2vec >> PyTorchBiLSTM(width, width, bilstm_depth)
|
|
# Work around thinc API limitations :(. TODO: Revise in Thinc 7
|
|
tok2vec.nO = width
|
|
tok2vec.embed = embed
|
|
return tok2vec
|
|
|
|
|
|
def reapply(layer, n_times):
|
|
def reapply_fwd(X, drop=0.0):
|
|
backprops = []
|
|
for i in range(n_times):
|
|
Y, backprop = layer.begin_update(X, drop=drop)
|
|
X = Y
|
|
backprops.append(backprop)
|
|
|
|
def reapply_bwd(dY, sgd=None):
|
|
dX = None
|
|
for backprop in reversed(backprops):
|
|
dY = backprop(dY, sgd=sgd)
|
|
if dX is None:
|
|
dX = dY
|
|
else:
|
|
dX += dY
|
|
return dX
|
|
|
|
return Y, reapply_bwd
|
|
|
|
return wrap(reapply_fwd, layer)
|
|
|
|
|
|
def asarray(ops, dtype):
|
|
def forward(X, drop=0.0):
|
|
return ops.asarray(X, dtype=dtype), None
|
|
|
|
return layerize(forward)
|
|
|
|
|
|
def _divide_array(X, size):
|
|
parts = []
|
|
index = 0
|
|
while index < len(X):
|
|
parts.append(X[index : index + size])
|
|
index += size
|
|
return parts
|
|
|
|
|
|
def get_col(idx):
|
|
if idx < 0:
|
|
raise IndexError(Errors.E066.format(value=idx))
|
|
|
|
def forward(X, drop=0.0):
|
|
if isinstance(X, numpy.ndarray):
|
|
ops = NumpyOps()
|
|
else:
|
|
ops = CupyOps()
|
|
output = ops.xp.ascontiguousarray(X[:, idx], dtype=X.dtype)
|
|
|
|
def backward(y, sgd=None):
|
|
dX = ops.allocate(X.shape)
|
|
dX[:, idx] += y
|
|
return dX
|
|
|
|
return output, backward
|
|
|
|
return layerize(forward)
|
|
|
|
|
|
def doc2feats(cols=None):
|
|
if cols is None:
|
|
cols = [ID, NORM, PREFIX, SUFFIX, SHAPE, ORTH]
|
|
|
|
def forward(docs, drop=0.0):
|
|
feats = []
|
|
for doc in docs:
|
|
feats.append(doc.to_array(cols))
|
|
return feats, None
|
|
|
|
model = layerize(forward)
|
|
model.cols = cols
|
|
return model
|
|
|
|
|
|
def print_shape(prefix):
|
|
def forward(X, drop=0.0):
|
|
return X, lambda dX, **kwargs: dX
|
|
|
|
return layerize(forward)
|
|
|
|
|
|
@layerize
|
|
def get_token_vectors(tokens_attrs_vectors, drop=0.0):
|
|
tokens, attrs, vectors = tokens_attrs_vectors
|
|
|
|
def backward(d_output, sgd=None):
|
|
return (tokens, d_output)
|
|
|
|
return vectors, backward
|
|
|
|
|
|
@layerize
|
|
def logistic(X, drop=0.0):
|
|
xp = get_array_module(X)
|
|
if not isinstance(X, xp.ndarray):
|
|
X = xp.asarray(X)
|
|
# Clip to range (-10, 10)
|
|
X = xp.minimum(X, 10.0, X)
|
|
X = xp.maximum(X, -10.0, X)
|
|
Y = 1.0 / (1.0 + xp.exp(-X))
|
|
|
|
def logistic_bwd(dY, sgd=None):
|
|
dX = dY * (Y * (1 - Y))
|
|
return dX
|
|
|
|
return Y, logistic_bwd
|
|
|
|
|
|
def zero_init(model):
|
|
def _zero_init_impl(self, X, y):
|
|
self.W.fill(0)
|
|
|
|
model.on_data_hooks.append(_zero_init_impl)
|
|
return model
|
|
|
|
|
|
def getitem(i):
|
|
def getitem_fwd(X, drop=0.0):
|
|
return X[i], None
|
|
|
|
return layerize(getitem_fwd)
|
|
|
|
|
|
@describe.attributes(
|
|
W=Synapses("Weights matrix", lambda obj: (obj.nO, obj.nI), lambda W, ops: None)
|
|
)
|
|
class MultiSoftmax(Affine):
|
|
"""Neural network layer that predicts several multi-class attributes at once.
|
|
For instance, we might predict one class with 6 variables, and another with 5.
|
|
We predict the 11 neurons required for this, and then softmax them such
|
|
that columns 0-6 make a probability distribution and coumns 6-11 make another.
|
|
"""
|
|
|
|
name = "multisoftmax"
|
|
|
|
def __init__(self, out_sizes, nI=None, **kwargs):
|
|
Model.__init__(self, **kwargs)
|
|
self.out_sizes = out_sizes
|
|
self.nO = sum(out_sizes)
|
|
self.nI = nI
|
|
|
|
def predict(self, input__BI):
|
|
output__BO = self.ops.affine(self.W, self.b, input__BI)
|
|
i = 0
|
|
for out_size in self.out_sizes:
|
|
self.ops.softmax(output__BO[:, i : i + out_size], inplace=True)
|
|
i += out_size
|
|
return output__BO
|
|
|
|
def begin_update(self, input__BI, drop=0.0):
|
|
output__BO = self.predict(input__BI)
|
|
|
|
def finish_update(grad__BO, sgd=None):
|
|
self.d_W += self.ops.gemm(grad__BO, input__BI, trans1=True)
|
|
self.d_b += grad__BO.sum(axis=0)
|
|
grad__BI = self.ops.gemm(grad__BO, self.W)
|
|
if sgd is not None:
|
|
sgd(self._mem.weights, self._mem.gradient, key=self.id)
|
|
return grad__BI
|
|
|
|
return output__BO, finish_update
|
|
|
|
|
|
def build_tagger_model(nr_class, **cfg):
|
|
embed_size = util.env_opt("embed_size", 2000)
|
|
if "token_vector_width" in cfg:
|
|
token_vector_width = cfg["token_vector_width"]
|
|
else:
|
|
token_vector_width = util.env_opt("token_vector_width", 96)
|
|
pretrained_vectors = cfg.get("pretrained_vectors")
|
|
subword_features = cfg.get("subword_features", True)
|
|
with Model.define_operators({">>": chain, "+": add}):
|
|
if "tok2vec" in cfg:
|
|
tok2vec = cfg["tok2vec"]
|
|
else:
|
|
tok2vec = Tok2Vec(
|
|
token_vector_width,
|
|
embed_size,
|
|
subword_features=subword_features,
|
|
pretrained_vectors=pretrained_vectors,
|
|
)
|
|
softmax = with_flatten(Softmax(nr_class, token_vector_width))
|
|
model = tok2vec >> softmax
|
|
model.nI = None
|
|
model.tok2vec = tok2vec
|
|
model.softmax = softmax
|
|
return model
|
|
|
|
|
|
def build_morphologizer_model(class_nums, **cfg):
|
|
embed_size = util.env_opt("embed_size", 7000)
|
|
if "token_vector_width" in cfg:
|
|
token_vector_width = cfg["token_vector_width"]
|
|
else:
|
|
token_vector_width = util.env_opt("token_vector_width", 128)
|
|
pretrained_vectors = cfg.get("pretrained_vectors")
|
|
char_embed = cfg.get("char_embed", True)
|
|
with Model.define_operators({">>": chain, "+": add, "**": clone}):
|
|
if "tok2vec" in cfg:
|
|
tok2vec = cfg["tok2vec"]
|
|
else:
|
|
tok2vec = Tok2Vec(
|
|
token_vector_width,
|
|
embed_size,
|
|
char_embed=char_embed,
|
|
pretrained_vectors=pretrained_vectors,
|
|
)
|
|
softmax = with_flatten(MultiSoftmax(class_nums, token_vector_width))
|
|
softmax.out_sizes = class_nums
|
|
model = tok2vec >> softmax
|
|
model.nI = None
|
|
model.tok2vec = tok2vec
|
|
model.softmax = softmax
|
|
return model
|
|
|
|
|
|
@layerize
|
|
def SpacyVectors(docs, drop=0.0):
|
|
batch = []
|
|
for doc in docs:
|
|
indices = numpy.zeros((len(doc),), dtype="i")
|
|
for i, word in enumerate(doc):
|
|
if word.orth in doc.vocab.vectors.key2row:
|
|
indices[i] = doc.vocab.vectors.key2row[word.orth]
|
|
else:
|
|
indices[i] = 0
|
|
vectors = doc.vocab.vectors.data[indices]
|
|
batch.append(vectors)
|
|
return batch, None
|
|
|
|
|
|
def build_text_classifier(nr_class, width=64, **cfg):
|
|
depth = cfg.get("depth", 2)
|
|
nr_vector = cfg.get("nr_vector", 5000)
|
|
pretrained_dims = cfg.get("pretrained_dims", 0)
|
|
with Model.define_operators({">>": chain, "+": add, "|": concatenate, "**": clone}):
|
|
if cfg.get("low_data") and pretrained_dims:
|
|
model = (
|
|
SpacyVectors
|
|
>> flatten_add_lengths
|
|
>> with_getitem(0, Affine(width, pretrained_dims))
|
|
>> ParametricAttention(width)
|
|
>> Pooling(sum_pool)
|
|
>> Residual(ReLu(width, width)) ** 2
|
|
>> zero_init(Affine(nr_class, width, drop_factor=0.0))
|
|
>> logistic
|
|
)
|
|
return model
|
|
|
|
lower = HashEmbed(width, nr_vector, column=1)
|
|
prefix = HashEmbed(width // 2, nr_vector, column=2)
|
|
suffix = HashEmbed(width // 2, nr_vector, column=3)
|
|
shape = HashEmbed(width // 2, nr_vector, column=4)
|
|
|
|
trained_vectors = FeatureExtracter(
|
|
[ORTH, LOWER, PREFIX, SUFFIX, SHAPE, ID]
|
|
) >> with_flatten(
|
|
uniqued(
|
|
(lower | prefix | suffix | shape)
|
|
>> LN(Maxout(width, width + (width // 2) * 3)),
|
|
column=0,
|
|
)
|
|
)
|
|
|
|
if pretrained_dims:
|
|
static_vectors = SpacyVectors >> with_flatten(
|
|
Affine(width, pretrained_dims)
|
|
)
|
|
# TODO Make concatenate support lists
|
|
vectors = concatenate_lists(trained_vectors, static_vectors)
|
|
vectors_width = width * 2
|
|
else:
|
|
vectors = trained_vectors
|
|
vectors_width = width
|
|
static_vectors = None
|
|
tok2vec = vectors >> with_flatten(
|
|
LN(Maxout(width, vectors_width))
|
|
>> Residual((ExtractWindow(nW=1) >> LN(Maxout(width, width * 3)))) ** depth,
|
|
pad=depth,
|
|
)
|
|
cnn_model = (
|
|
tok2vec
|
|
>> flatten_add_lengths
|
|
>> ParametricAttention(width)
|
|
>> Pooling(sum_pool)
|
|
>> Residual(zero_init(Maxout(width, width)))
|
|
>> zero_init(Affine(nr_class, width, drop_factor=0.0))
|
|
)
|
|
|
|
linear_model = build_bow_text_classifier(
|
|
nr_class, ngram_size=cfg.get("ngram_size", 1), exclusive_classes=False
|
|
)
|
|
if cfg.get("exclusive_classes"):
|
|
output_layer = Softmax(nr_class, nr_class * 2)
|
|
else:
|
|
output_layer = (
|
|
zero_init(Affine(nr_class, nr_class * 2, drop_factor=0.0)) >> logistic
|
|
)
|
|
model = (linear_model | cnn_model) >> output_layer
|
|
model.tok2vec = chain(tok2vec, flatten)
|
|
model.nO = nr_class
|
|
model.lsuv = False
|
|
return model
|
|
|
|
|
|
def build_bow_text_classifier(
|
|
nr_class, ngram_size=1, exclusive_classes=False, no_output_layer=False, **cfg
|
|
):
|
|
with Model.define_operators({">>": chain}):
|
|
model = with_cpu(
|
|
Model.ops, extract_ngrams(ngram_size, attr=ORTH) >> LinearModel(nr_class)
|
|
)
|
|
if not no_output_layer:
|
|
model = model >> (cpu_softmax if exclusive_classes else logistic)
|
|
model.nO = nr_class
|
|
return model
|
|
|
|
|
|
@layerize
|
|
def cpu_softmax(X, drop=0.0):
|
|
ops = NumpyOps()
|
|
|
|
def cpu_softmax_backward(dY, sgd=None):
|
|
return dY
|
|
|
|
return ops.softmax(X), cpu_softmax_backward
|
|
|
|
|
|
def build_simple_cnn_text_classifier(tok2vec, nr_class, exclusive_classes=False, **cfg):
|
|
"""
|
|
Build a simple CNN text classifier, given a token-to-vector model as inputs.
|
|
If exclusive_classes=True, a softmax non-linearity is applied, so that the
|
|
outputs sum to 1. If exclusive_classes=False, a logistic non-linearity
|
|
is applied instead, so that outputs are in the range [0, 1].
|
|
"""
|
|
with Model.define_operators({">>": chain}):
|
|
if exclusive_classes:
|
|
output_layer = Softmax(nr_class, tok2vec.nO)
|
|
else:
|
|
output_layer = (
|
|
zero_init(Affine(nr_class, tok2vec.nO, drop_factor=0.0)) >> logistic
|
|
)
|
|
model = tok2vec >> flatten_add_lengths >> Pooling(mean_pool) >> output_layer
|
|
model.tok2vec = chain(tok2vec, flatten)
|
|
model.nO = nr_class
|
|
return model
|
|
|
|
|
|
def build_nel_encoder(embed_width, hidden_width, ner_types, **cfg):
|
|
if "entity_width" not in cfg:
|
|
raise ValueError(Errors.E144.format(param="entity_width"))
|
|
|
|
conv_depth = cfg.get("conv_depth", 2)
|
|
cnn_maxout_pieces = cfg.get("cnn_maxout_pieces", 3)
|
|
pretrained_vectors = cfg.get("pretrained_vectors", None)
|
|
context_width = cfg.get("entity_width")
|
|
|
|
with Model.define_operators({">>": chain, "**": clone}):
|
|
# context encoder
|
|
tok2vec = Tok2Vec(
|
|
width=hidden_width,
|
|
embed_size=embed_width,
|
|
pretrained_vectors=pretrained_vectors,
|
|
cnn_maxout_pieces=cnn_maxout_pieces,
|
|
subword_features=True,
|
|
conv_depth=conv_depth,
|
|
bilstm_depth=0,
|
|
)
|
|
|
|
model = (
|
|
tok2vec
|
|
>> flatten_add_lengths
|
|
>> Pooling(mean_pool)
|
|
>> Residual(zero_init(Maxout(hidden_width, hidden_width)))
|
|
>> zero_init(Affine(context_width, hidden_width, drop_factor=0.0))
|
|
)
|
|
|
|
model.tok2vec = tok2vec
|
|
model.nO = context_width
|
|
return model
|
|
|
|
|
|
@layerize
|
|
def flatten(seqs, drop=0.0):
|
|
ops = Model.ops
|
|
lengths = ops.asarray([len(seq) for seq in seqs], dtype="i")
|
|
|
|
def finish_update(d_X, sgd=None):
|
|
return ops.unflatten(d_X, lengths, pad=0)
|
|
|
|
X = ops.flatten(seqs, pad=0)
|
|
return X, finish_update
|
|
|
|
|
|
def concatenate_lists(*layers, **kwargs): # pragma: no cover
|
|
"""Compose two or more models `f`, `g`, etc, such that their outputs are
|
|
concatenated, i.e. `concatenate(f, g)(x)` computes `hstack(f(x), g(x))`
|
|
"""
|
|
if not layers:
|
|
return noop()
|
|
drop_factor = kwargs.get("drop_factor", 1.0)
|
|
ops = layers[0].ops
|
|
layers = [chain(layer, flatten) for layer in layers]
|
|
concat = concatenate(*layers)
|
|
|
|
def concatenate_lists_fwd(Xs, drop=0.0):
|
|
if drop is not None:
|
|
drop *= drop_factor
|
|
lengths = ops.asarray([len(X) for X in Xs], dtype="i")
|
|
flat_y, bp_flat_y = concat.begin_update(Xs, drop=drop)
|
|
ys = ops.unflatten(flat_y, lengths)
|
|
|
|
def concatenate_lists_bwd(d_ys, sgd=None):
|
|
return bp_flat_y(ops.flatten(d_ys), sgd=sgd)
|
|
|
|
return ys, concatenate_lists_bwd
|
|
|
|
model = wrap(concatenate_lists_fwd, concat)
|
|
return model
|
|
|
|
|
|
def masked_language_model(vocab, model, mask_prob=0.15):
|
|
"""Convert a model into a BERT-style masked language model"""
|
|
|
|
random_words = _RandomWords(vocab)
|
|
|
|
def mlm_forward(docs, drop=0.0):
|
|
mask, docs = _apply_mask(docs, random_words, mask_prob=mask_prob)
|
|
mask = model.ops.asarray(mask).reshape((mask.shape[0], 1))
|
|
output, backprop = model.begin_update(docs, drop=drop)
|
|
|
|
def mlm_backward(d_output, sgd=None):
|
|
d_output *= 1 - mask
|
|
return backprop(d_output, sgd=sgd)
|
|
|
|
return output, mlm_backward
|
|
|
|
return wrap(mlm_forward, model)
|
|
|
|
|
|
class _RandomWords(object):
|
|
def __init__(self, vocab):
|
|
self.words = [lex.text for lex in vocab if lex.prob != 0.0]
|
|
self.probs = [lex.prob for lex in vocab if lex.prob != 0.0]
|
|
self.words = self.words[:10000]
|
|
self.probs = self.probs[:10000]
|
|
self.probs = numpy.exp(numpy.array(self.probs, dtype="f"))
|
|
self.probs /= self.probs.sum()
|
|
self._cache = []
|
|
|
|
def next(self):
|
|
if not self._cache:
|
|
self._cache.extend(
|
|
numpy.random.choice(len(self.words), 10000, p=self.probs)
|
|
)
|
|
index = self._cache.pop()
|
|
return self.words[index]
|
|
|
|
|
|
def _apply_mask(docs, random_words, mask_prob=0.15):
|
|
# This needs to be here to avoid circular imports
|
|
from .tokens.doc import Doc
|
|
|
|
N = sum(len(doc) for doc in docs)
|
|
mask = numpy.random.uniform(0.0, 1.0, (N,))
|
|
mask = mask >= mask_prob
|
|
i = 0
|
|
masked_docs = []
|
|
for doc in docs:
|
|
words = []
|
|
for token in doc:
|
|
if not mask[i]:
|
|
word = _replace_word(token.text, random_words)
|
|
else:
|
|
word = token.text
|
|
words.append(word)
|
|
i += 1
|
|
spaces = [bool(w.whitespace_) for w in doc]
|
|
# NB: If you change this implementation to instead modify
|
|
# the docs in place, take care that the IDs reflect the original
|
|
# words. Currently we use the original docs to make the vectors
|
|
# for the target, so we don't lose the original tokens. But if
|
|
# you modified the docs in place here, you would.
|
|
masked_docs.append(Doc(doc.vocab, words=words, spaces=spaces))
|
|
return mask, masked_docs
|
|
|
|
|
|
def _replace_word(word, random_words, mask="[MASK]"):
|
|
roll = numpy.random.random()
|
|
if roll < 0.8:
|
|
return mask
|
|
elif roll < 0.9:
|
|
return random_words.next()
|
|
else:
|
|
return word
|
|
|
|
|
|
def _uniform_init(lo, hi):
|
|
def wrapped(W, ops):
|
|
copy_array(W, ops.xp.random.uniform(lo, hi, W.shape))
|
|
|
|
return wrapped
|
|
|
|
|
|
@describe.attributes(
|
|
nM=Dimension("Vector dimensions"),
|
|
nC=Dimension("Number of characters per word"),
|
|
vectors=Synapses(
|
|
"Embed matrix", lambda obj: (obj.nC, obj.nV, obj.nM), _uniform_init(-0.1, 0.1)
|
|
),
|
|
d_vectors=Gradient("vectors"),
|
|
)
|
|
class CharacterEmbed(Model):
|
|
def __init__(self, nM=None, nC=None, **kwargs):
|
|
Model.__init__(self, **kwargs)
|
|
self.nM = nM
|
|
self.nC = nC
|
|
|
|
@property
|
|
def nO(self):
|
|
return self.nM * self.nC
|
|
|
|
@property
|
|
def nV(self):
|
|
return 256
|
|
|
|
def begin_update(self, docs, drop=0.0):
|
|
if not docs:
|
|
return []
|
|
ids = []
|
|
output = []
|
|
weights = self.vectors
|
|
# This assists in indexing; it's like looping over this dimension.
|
|
# Still consider this weird witch craft...But thanks to Mark Neumann
|
|
# for the tip.
|
|
nCv = self.ops.xp.arange(self.nC)
|
|
for doc in docs:
|
|
doc_ids = doc.to_utf8_array(nr_char=self.nC)
|
|
doc_vectors = self.ops.allocate((len(doc), self.nC, self.nM))
|
|
# Let's say I have a 2d array of indices, and a 3d table of data. What numpy
|
|
# incantation do I chant to get
|
|
# output[i, j, k] == data[j, ids[i, j], k]?
|
|
doc_vectors[:, nCv] = weights[nCv, doc_ids[:, nCv]]
|
|
output.append(doc_vectors.reshape((len(doc), self.nO)))
|
|
ids.append(doc_ids)
|
|
|
|
def backprop_character_embed(d_vectors, sgd=None):
|
|
gradient = self.d_vectors
|
|
for doc_ids, d_doc_vectors in zip(ids, d_vectors):
|
|
d_doc_vectors = d_doc_vectors.reshape((len(doc_ids), self.nC, self.nM))
|
|
gradient[nCv, doc_ids[:, nCv]] += d_doc_vectors[:, nCv]
|
|
if sgd is not None:
|
|
sgd(self._mem.weights, self._mem.gradient, key=self.id)
|
|
return None
|
|
|
|
return output, backprop_character_embed
|
|
|
|
|
|
def get_cossim_loss(yh, y, ignore_zeros=False):
|
|
xp = get_array_module(yh)
|
|
# Find the zero vectors
|
|
if ignore_zeros:
|
|
zero_indices = xp.abs(y).sum(axis=1) == 0
|
|
# Add a small constant to avoid 0 vectors
|
|
yh = yh + 1e-8
|
|
y = y + 1e-8
|
|
# https://math.stackexchange.com/questions/1923613/partial-derivative-of-cosine-similarity
|
|
norm_yh = xp.linalg.norm(yh, axis=1, keepdims=True)
|
|
norm_y = xp.linalg.norm(y, axis=1, keepdims=True)
|
|
mul_norms = norm_yh * norm_y
|
|
cosine = (yh * y).sum(axis=1, keepdims=True) / mul_norms
|
|
d_yh = (y / mul_norms) - (cosine * (yh / norm_yh ** 2))
|
|
losses = xp.abs(cosine - 1)
|
|
if ignore_zeros:
|
|
# If the target was a zero vector, don't count it in the loss.
|
|
d_yh[zero_indices] = 0
|
|
losses[zero_indices] = 0
|
|
loss = losses.sum()
|
|
return loss, -d_yh
|