spaCy/spacy/vectors.pyx

188 lines
5.6 KiB
Cython

from libc.stdint cimport int32_t, uint64_t
import numpy
from collections import OrderedDict
import msgpack
import msgpack_numpy
msgpack_numpy.patch()
from cymem.cymem cimport Pool
cimport numpy as np
from libcpp.vector cimport vector
from .typedefs cimport attr_t
from .strings cimport StringStore
from . import util
from ._cfile cimport CFile
MAX_VEC_SIZE = 10000
cdef class Vectors:
'''Store, save and load word vectors.'''
cdef public object data
cdef readonly StringStore strings
cdef public object index
def __init__(self, strings, data_or_width):
self.strings = StringStore()
if isinstance(data_or_width, int):
self.data = data = numpy.zeros((len(strings), data_or_width),
dtype='f')
else:
data = data_or_width
self.data = data
self.index = {}
for i, string in enumerate(strings):
self.index[self.strings.add(string)] = i
def __reduce__(self):
return (Vectors, (self.strings, self.data))
def __getitem__(self, key):
if isinstance(key, basestring):
key = self.strings[key]
i = self.index[key]
if i is None:
raise KeyError(key)
else:
return self.data[i]
def __setitem__(self, key, vector):
if isinstance(key, basestring):
key = self.strings.add(key)
i = self.index[key]
self.data[i] = vector
def __iter__(self):
yield from self.data
def __len__(self):
return len(self.strings)
def items(self):
for i, string in enumerate(self.strings):
yield string, self.data[i]
@property
def shape(self):
return self.data.shape
def most_similar(self, key):
raise NotImplementedError
def to_disk(self, path, **exclude):
def serialize_vectors(p):
write_vectors_to_bin_loc(self.strings, self.key2i, self.data, str(p))
serializers = OrderedDict((
('vec.bin', serialize_vectors),
))
return util.to_disk(serializers, exclude)
def from_disk(self, path, **exclude):
def deserialize_vectors(p):
self.key2i, self.vectors = load_vectors_from_bin_loc(self.strings, str(p))
serializers = OrderedDict((
('vec.bin', deserialize_vectors)
))
return util.to_disk(serializers, exclude)
def to_bytes(self, **exclude):
def serialize_weights():
if hasattr(self.data, 'to_bytes'):
return self.data.to_bytes()
else:
return msgpack.dumps(self.data)
serializers = OrderedDict((
('key2row', lambda: msgpack.dumps(self.key2i)),
('strings', lambda: self.strings.to_bytes()),
('vectors', serialize_weights)
))
return util.to_bytes(serializers, exclude)
def from_bytes(self, data, **exclude):
def deserialize_weights(b):
if hasattr(self.data, 'from_bytes'):
self.data.from_bytes()
else:
self.data = msgpack.loads(b)
deserializers = OrderedDict((
('key2row', lambda b: self.key2i.update(msgpack.loads(b))),
('strings', lambda b: self.strings.from_bytes(b)),
('vectors', deserialize_weights)
))
return util.from_bytes(deserializers, exclude)
def write_vectors_to_bin_loc(StringStore strings, dict key2i,
np.ndarray vectors, out_loc):
cdef int32_t vec_len = vectors.shape[1]
cdef int32_t word_len
cdef bytes word_str
cdef char* chars
cdef uint64_t key
cdef int32_t i
cdef float* vec
cdef CFile out_file = CFile(out_loc, 'wb')
keys = [(i, key) for (key, i) in key2i.item()]
keys.sort()
for i, key in keys:
vec = <float*>vectors.data[i * vec_len]
word_str = strings[key].encode('utf8')
word_len = len(word_str)
out_file.write_from(&word_len, 1, sizeof(word_len))
out_file.write_from(&vec_len, 1, sizeof(vec_len))
chars = <char*>word_str
out_file.write_from(chars, word_len, sizeof(char))
out_file.write_from(vec, vec_len, sizeof(float))
out_file.close()
def load_vectors_from_bin_loc(StringStore strings, loc):
"""
Load vectors from the location of a binary file.
Arguments:
loc (unicode): The path of the binary file to load from.
Returns:
vec_len (int): The length of the vectors loaded.
"""
cdef CFile file_ = CFile(loc, b'rb')
cdef int32_t word_len
cdef int32_t vec_len = 0
cdef int32_t prev_vec_len = 0
cdef float* vec
cdef attr_t string_id
cdef bytes py_word
cdef vector[float*] vectors
cdef int line_num = 0
cdef Pool mem = Pool()
cdef dict key2i = {}
while True:
try:
file_.read_into(&word_len, sizeof(word_len), 1)
except IOError:
break
file_.read_into(&vec_len, sizeof(vec_len), 1)
if prev_vec_len != 0 and vec_len != prev_vec_len:
raise Exception("Mismatched vector sizes")
if 0 >= vec_len >= MAX_VEC_SIZE:
raise Exception("Mismatched vector sizes")
chars = <char*>file_.alloc_read(mem, word_len, sizeof(char))
vec = <float*>file_.alloc_read(mem, vec_len, sizeof(float))
key = strings.add(chars[:word_len])
key2i[key] = vectors.size()
vectors.push_back(vec)
numpy_vectors = numpy.zeros((vectors.size(), vec_len), dtype='f')
for i in range(vectors.size()):
for j in range(vec_len):
numpy_vectors[i, j] = vectors[i][j]
return key2i, numpy_vectors