mirror of https://github.com/explosion/spaCy.git
512 lines
19 KiB
Cython
512 lines
19 KiB
Cython
"""
|
|
MALT-style dependency parser
|
|
"""
|
|
# coding: utf-8
|
|
# cython: infer_types=True
|
|
from __future__ import unicode_literals
|
|
|
|
from collections import Counter
|
|
import ujson
|
|
|
|
cimport cython
|
|
cimport cython.parallel
|
|
|
|
import numpy.random
|
|
|
|
from cpython.ref cimport PyObject, Py_INCREF, Py_XDECREF
|
|
from cpython.exc cimport PyErr_CheckSignals
|
|
from libc.stdint cimport uint32_t, uint64_t
|
|
from libc.string cimport memset, memcpy
|
|
from libc.stdlib cimport malloc, calloc, free
|
|
from thinc.typedefs cimport weight_t, class_t, feat_t, atom_t, hash_t
|
|
from thinc.linear.avgtron cimport AveragedPerceptron
|
|
from thinc.linalg cimport VecVec
|
|
from thinc.structs cimport SparseArrayC, FeatureC, ExampleC
|
|
from thinc.extra.eg cimport Example
|
|
from cymem.cymem cimport Pool, Address
|
|
from murmurhash.mrmr cimport hash64
|
|
from preshed.maps cimport MapStruct
|
|
from preshed.maps cimport map_get
|
|
|
|
from numpy import exp
|
|
|
|
from . import _parse_features
|
|
from ._parse_features cimport CONTEXT_SIZE
|
|
from ._parse_features cimport fill_context
|
|
from .stateclass cimport StateClass
|
|
from ._state cimport StateC
|
|
from .nonproj import PseudoProjectivity
|
|
from .transition_system import OracleError
|
|
from .transition_system cimport TransitionSystem, Transition
|
|
from ..structs cimport TokenC
|
|
from ..tokens.doc cimport Doc
|
|
from ..strings cimport StringStore
|
|
from ..gold cimport GoldParse
|
|
from ..attrs cimport TAG, DEP
|
|
|
|
from .._ml import build_parser_state2vec, build_model
|
|
from .._ml import build_state2vec, build_model
|
|
from .._ml import build_debug_state2vec, build_debug_model
|
|
|
|
|
|
USE_FTRL = True
|
|
DEBUG = False
|
|
def set_debug(val):
|
|
global DEBUG
|
|
DEBUG = val
|
|
|
|
|
|
def get_templates(*args, **kwargs):
|
|
return []
|
|
|
|
|
|
cdef class Parser:
|
|
"""
|
|
Base class of the DependencyParser and EntityRecognizer.
|
|
"""
|
|
@classmethod
|
|
def load(cls, path, Vocab vocab, TransitionSystem=None, require=False, **cfg):
|
|
"""
|
|
Load the statistical model from the supplied path.
|
|
|
|
Arguments:
|
|
path (Path):
|
|
The path to load from.
|
|
vocab (Vocab):
|
|
The vocabulary. Must be shared by the documents to be processed.
|
|
require (bool):
|
|
Whether to raise an error if the files are not found.
|
|
Returns (Parser):
|
|
The newly constructed object.
|
|
"""
|
|
with (path / 'config.json').open() as file_:
|
|
cfg = ujson.load(file_)
|
|
self = cls(vocab, TransitionSystem=TransitionSystem, model=None, **cfg)
|
|
if (path / 'model').exists():
|
|
self.model.load(str(path / 'model'))
|
|
elif require:
|
|
raise IOError(
|
|
"Required file %s/model not found when loading" % str(path))
|
|
return self
|
|
|
|
def __init__(self, Vocab vocab, TransitionSystem=None, model=None, **cfg):
|
|
"""
|
|
Create a Parser.
|
|
|
|
Arguments:
|
|
vocab (Vocab):
|
|
The vocabulary object. Must be shared with documents to be processed.
|
|
model (thinc Model):
|
|
The statistical model.
|
|
Returns (Parser):
|
|
The newly constructed object.
|
|
"""
|
|
if TransitionSystem is None:
|
|
TransitionSystem = self.TransitionSystem
|
|
self.vocab = vocab
|
|
cfg['actions'] = TransitionSystem.get_actions(**cfg)
|
|
self.moves = TransitionSystem(vocab.strings, cfg['actions'])
|
|
if model is None:
|
|
model = self.build_model(**cfg)
|
|
self.model = model
|
|
self.cfg = cfg
|
|
|
|
def __reduce__(self):
|
|
return (Parser, (self.vocab, self.moves, self.model), None, None)
|
|
|
|
def build_model(self, width=128, nr_vector=1000, nF=1, nB=1, nS=1, nL=1, nR=1, **_):
|
|
nr_context_tokens = StateClass.nr_context_tokens(nF, nB, nS, nL, nR)
|
|
state2vec = build_state2vec(nr_context_tokens, width, nr_vector)
|
|
#state2vec = build_debug_state2vec(width, nr_vector)
|
|
model = build_debug_model(state2vec, width*2, 2, self.moves.n_moves)
|
|
return model
|
|
|
|
def __call__(self, Doc tokens):
|
|
"""
|
|
Apply the parser or entity recognizer, setting the annotations onto the Doc object.
|
|
|
|
Arguments:
|
|
doc (Doc): The document to be processed.
|
|
Returns:
|
|
None
|
|
"""
|
|
self.parse_batch([tokens])
|
|
self.moves.finalize_doc(tokens)
|
|
|
|
def pipe(self, stream, int batch_size=1000, int n_threads=2):
|
|
"""
|
|
Process a stream of documents.
|
|
|
|
Arguments:
|
|
stream: The sequence of documents to process.
|
|
batch_size (int):
|
|
The number of documents to accumulate into a working set.
|
|
n_threads (int):
|
|
The number of threads with which to work on the buffer in parallel.
|
|
Yields (Doc): Documents, in order.
|
|
"""
|
|
cdef Pool mem = Pool()
|
|
cdef int* lengths = <int*>mem.alloc(batch_size, sizeof(int))
|
|
cdef Doc doc
|
|
cdef int i
|
|
cdef int nr_feat = self.model.nr_feat
|
|
cdef int status
|
|
queue = []
|
|
for doc in stream:
|
|
queue.append(doc)
|
|
if len(queue) == batch_size:
|
|
self.parse_batch(queue)
|
|
for doc in queue:
|
|
self.moves.finalize_doc(doc)
|
|
yield doc
|
|
queue = []
|
|
if queue:
|
|
self.parse_batch(queue)
|
|
for doc in queue:
|
|
self.moves.finalize_doc(doc)
|
|
yield doc
|
|
|
|
def parse_batch(self, docs):
|
|
states = self._init_states(docs)
|
|
nr_class = self.moves.n_moves
|
|
cdef Doc doc
|
|
cdef StateClass state
|
|
cdef int guess
|
|
tokvecs = [d.tensor for d in docs]
|
|
all_states = list(states)
|
|
todo = zip(states, tokvecs)
|
|
while todo:
|
|
todo = filter(lambda sp: not sp[0].py_is_final(), todo)
|
|
if not todo:
|
|
break
|
|
states, tokvecs = zip(*todo)
|
|
scores, _ = self._begin_update(states, tokvecs)
|
|
self._transition_batch(states, docs, scores)
|
|
for state, doc in zip(all_states, docs):
|
|
self.moves.finalize_state(state.c)
|
|
for i in range(doc.length):
|
|
doc.c[i] = state.c._sent[i]
|
|
|
|
def begin_training(self, docs, golds):
|
|
for gold in golds:
|
|
self.moves.preprocess_gold(gold)
|
|
states = self._init_states(docs)
|
|
tokvecs = [d.tensor for d in docs]
|
|
d_tokens = [self.model.ops.allocate(d.tensor.shape) for d in docs]
|
|
nr_class = self.moves.n_moves
|
|
costs = self.model.ops.allocate((len(docs), nr_class), dtype='f')
|
|
gradients = self.model.ops.allocate((len(docs), nr_class), dtype='f')
|
|
is_valid = self.model.ops.allocate((len(docs), nr_class), dtype='i')
|
|
attr_names = numpy.zeros((2,), dtype='i')
|
|
attr_names[0] = TAG
|
|
attr_names[1] = DEP
|
|
|
|
features = self._get_features(states, tokvecs, attr_names)
|
|
self.model.begin_training(features)
|
|
|
|
def update(self, docs, golds, drop=0., sgd=None):
|
|
if isinstance(docs, Doc) and isinstance(golds, GoldParse):
|
|
return self.update([docs], [golds], drop=drop)
|
|
for gold in golds:
|
|
self.moves.preprocess_gold(gold)
|
|
states = self._init_states(docs)
|
|
tokvecs = [d.tensor for d in docs]
|
|
d_tokens = [self.model.ops.allocate(d.tensor.shape) for d in docs]
|
|
nr_class = self.moves.n_moves
|
|
output = list(d_tokens)
|
|
todo = zip(states, tokvecs, golds, d_tokens)
|
|
assert len(states) == len(todo)
|
|
losses = []
|
|
while todo:
|
|
# Get unfinished states (and their matching gold and token gradients)
|
|
todo = filter(lambda sp: not sp[0].py_is_final(), todo)
|
|
if not todo:
|
|
break
|
|
states, tokvecs, golds, d_tokens = zip(*todo)
|
|
scores, finish_update = self._begin_update(states, tokvecs)
|
|
token_ids, batch_token_grads = finish_update(golds, sgd=sgd, losses=losses,
|
|
force_gold=False)
|
|
batch_token_grads *= (token_ids >= 0).reshape((token_ids.shape[0], token_ids.shape[1], 1))
|
|
token_ids *= token_ids >= 0
|
|
if hasattr(self.model.ops.xp, 'scatter_add'):
|
|
for i, tok_ids in enumerate(token_ids):
|
|
self.model.ops.xp.scatter_add(d_tokens[i],
|
|
tok_ids, batch_token_grads[i])
|
|
else:
|
|
for i, tok_ids in enumerate(token_ids):
|
|
self.model.ops.xp.add.at(d_tokens[i],
|
|
tok_ids, batch_token_grads[i])
|
|
self._transition_batch(states, docs, scores)
|
|
return output, sum(losses)
|
|
|
|
def _begin_update(self, states, tokvecs, drop=0.):
|
|
nr_class = self.moves.n_moves
|
|
attr_names = numpy.zeros((2,), dtype='i')
|
|
attr_names[0] = TAG
|
|
attr_names[1] = DEP
|
|
|
|
features = self._get_features(states, tokvecs, attr_names)
|
|
scores, finish_update = self.model.begin_update(features, drop=drop)
|
|
assert scores.shape[0] == len(states), (len(states), scores.shape)
|
|
assert len(scores.shape) == 2
|
|
is_valid = self.model.ops.allocate((len(states), nr_class), dtype='i')
|
|
self._validate_batch(is_valid, states)
|
|
softmaxed = self.model.ops.softmax(scores)
|
|
softmaxed *= is_valid
|
|
softmaxed /= softmaxed.sum(axis=1).reshape((softmaxed.shape[0], 1))
|
|
def backward(golds, sgd=None, losses=[], force_gold=False):
|
|
nonlocal softmaxed
|
|
costs = self.model.ops.allocate((len(states), nr_class), dtype='f')
|
|
d_scores = self.model.ops.allocate((len(states), nr_class), dtype='f')
|
|
|
|
self._cost_batch(costs, is_valid, states, golds)
|
|
self._set_gradient(d_scores, scores, is_valid, costs)
|
|
losses.append(self.model.ops.xp.abs(d_scores).sum())
|
|
if force_gold:
|
|
softmaxed *= costs <= 0
|
|
return finish_update(d_scores, sgd=sgd)
|
|
return softmaxed, backward
|
|
|
|
def _init_states(self, docs):
|
|
states = []
|
|
cdef Doc doc
|
|
cdef StateClass state
|
|
for i, doc in enumerate(docs):
|
|
state = StateClass.init(doc.c, doc.length)
|
|
self.moves.initialize_state(state.c)
|
|
states.append(state)
|
|
return states
|
|
|
|
def _get_features(self, states, all_tokvecs, attr_names,
|
|
nF=1, nB=0, nS=2, nL=2, nR=2):
|
|
n_tokens = states[0].nr_context_tokens(nF, nB, nS, nL, nR)
|
|
vector_length = all_tokvecs[0].shape[1]
|
|
cpu_tokens = numpy.zeros((len(states), n_tokens), dtype='int32')
|
|
features = numpy.zeros((len(states), n_tokens, attr_names.shape[0]), dtype='uint64')
|
|
tokvecs = self.model.ops.allocate((len(states), n_tokens, vector_length), dtype='f')
|
|
for i, state in enumerate(states):
|
|
state.set_context_tokens(cpu_tokens[i], nF, nB, nS, nL, nR)
|
|
for i in range(len(states)):
|
|
for j, tok_i in enumerate(cpu_tokens[i]):
|
|
if tok_i >= 0:
|
|
tokvecs[i, j] = all_tokvecs[i][tok_i]
|
|
return (cpu_tokens, self.model.ops.asarray(features), tokvecs)
|
|
|
|
def _validate_batch(self, int[:, ::1] is_valid, states):
|
|
cdef StateClass state
|
|
cdef int i
|
|
for i, state in enumerate(states):
|
|
self.moves.set_valid(&is_valid[i, 0], state.c)
|
|
|
|
def _cost_batch(self, float[:, ::1] costs, int[:, ::1] is_valid,
|
|
states, golds):
|
|
cdef int i
|
|
cdef StateClass state
|
|
cdef GoldParse gold
|
|
for i, (state, gold) in enumerate(zip(states, golds)):
|
|
self.moves.set_costs(&is_valid[i, 0], &costs[i, 0], state, gold)
|
|
|
|
def _transition_batch(self, states, docs, scores):
|
|
cdef StateClass state
|
|
cdef int guess
|
|
for state, doc, guess in zip(states, docs, scores.argmax(axis=1)):
|
|
action = self.moves.c[guess]
|
|
orths = [t.lex.orth for t in state.c._sent[:state.c.length]]
|
|
words = [doc.vocab.strings[w] for w in orths]
|
|
if not action.is_valid(state.c, action.label):
|
|
ValueError("Invalid action", scores)
|
|
action.do(state.c, action.label)
|
|
|
|
def _set_gradient(self, gradients, scores, is_valid, costs):
|
|
"""Do multi-label log loss"""
|
|
cdef double Z, gZ, max_, g_max
|
|
n = gradients.shape[0]
|
|
scores = scores * is_valid
|
|
g_scores = scores * is_valid * (costs <= 0.)
|
|
exps = self.model.ops.xp.exp(scores - scores.max(axis=1).reshape((n, 1)))
|
|
exps *= is_valid
|
|
g_exps = self.model.ops.xp.exp(g_scores - g_scores.max(axis=1).reshape((n, 1)))
|
|
g_exps *= costs <= 0.
|
|
g_exps *= is_valid
|
|
gradients[:] = exps / exps.sum(axis=1).reshape((n, 1))
|
|
gradients -= g_exps / g_exps.sum(axis=1).reshape((n, 1))
|
|
|
|
def step_through(self, Doc doc, GoldParse gold=None):
|
|
"""
|
|
Set up a stepwise state, to introspect and control the transition sequence.
|
|
|
|
Arguments:
|
|
doc (Doc): The document to step through.
|
|
gold (GoldParse): Optional gold parse
|
|
Returns (StepwiseState):
|
|
A state object, to step through the annotation process.
|
|
"""
|
|
return StepwiseState(self, doc, gold=gold)
|
|
|
|
def from_transition_sequence(self, Doc doc, sequence):
|
|
"""Control the annotations on a document by specifying a transition sequence
|
|
to follow.
|
|
|
|
Arguments:
|
|
doc (Doc): The document to annotate.
|
|
sequence: A sequence of action names, as unicode strings.
|
|
Returns: None
|
|
"""
|
|
with self.step_through(doc) as stepwise:
|
|
for transition in sequence:
|
|
stepwise.transition(transition)
|
|
|
|
def add_label(self, label):
|
|
# Doesn't set label into serializer -- subclasses override it to do that.
|
|
for action in self.moves.action_types:
|
|
added = self.moves.add_action(action, label)
|
|
if added:
|
|
# Important that the labels be stored as a list! We need the
|
|
# order, or the model goes out of synch
|
|
self.cfg.setdefault('extra_labels', []).append(label)
|
|
|
|
|
|
cdef int dropout(FeatureC* feats, int nr_feat, float prob) except -1:
|
|
if prob <= 0 or prob >= 1.:
|
|
return 0
|
|
cdef double[::1] py_probs = numpy.random.uniform(0., 1., nr_feat)
|
|
cdef double* probs = &py_probs[0]
|
|
for i in range(nr_feat):
|
|
if probs[i] >= prob:
|
|
feats[i].value /= prob
|
|
else:
|
|
feats[i].value = 0.
|
|
|
|
|
|
cdef class StepwiseState:
|
|
cdef readonly StateClass stcls
|
|
cdef readonly Example eg
|
|
cdef readonly Doc doc
|
|
cdef readonly GoldParse gold
|
|
cdef readonly Parser parser
|
|
|
|
def __init__(self, Parser parser, Doc doc, GoldParse gold=None):
|
|
self.parser = parser
|
|
self.doc = doc
|
|
if gold is not None:
|
|
self.gold = gold
|
|
self.parser.moves.preprocess_gold(self.gold)
|
|
else:
|
|
self.gold = GoldParse(doc)
|
|
self.stcls = StateClass.init(doc.c, doc.length)
|
|
self.parser.moves.initialize_state(self.stcls.c)
|
|
self.eg = Example(
|
|
nr_class=self.parser.moves.n_moves,
|
|
nr_atom=CONTEXT_SIZE,
|
|
nr_feat=self.parser.model.nr_feat)
|
|
|
|
def __enter__(self):
|
|
return self
|
|
|
|
def __exit__(self, type, value, traceback):
|
|
self.finish()
|
|
|
|
@property
|
|
def is_final(self):
|
|
return self.stcls.is_final()
|
|
|
|
@property
|
|
def stack(self):
|
|
return self.stcls.stack
|
|
|
|
@property
|
|
def queue(self):
|
|
return self.stcls.queue
|
|
|
|
@property
|
|
def heads(self):
|
|
return [self.stcls.H(i) for i in range(self.stcls.c.length)]
|
|
|
|
@property
|
|
def deps(self):
|
|
return [self.doc.vocab.strings[self.stcls.c._sent[i].dep]
|
|
for i in range(self.stcls.c.length)]
|
|
|
|
@property
|
|
def costs(self):
|
|
"""
|
|
Find the action-costs for the current state.
|
|
"""
|
|
if not self.gold:
|
|
raise ValueError("Can't set costs: No GoldParse provided")
|
|
self.parser.moves.set_costs(self.eg.c.is_valid, self.eg.c.costs,
|
|
self.stcls, self.gold)
|
|
costs = {}
|
|
for i in range(self.parser.moves.n_moves):
|
|
if not self.eg.c.is_valid[i]:
|
|
continue
|
|
transition = self.parser.moves.c[i]
|
|
name = self.parser.moves.move_name(transition.move, transition.label)
|
|
costs[name] = self.eg.c.costs[i]
|
|
return costs
|
|
|
|
def predict(self):
|
|
self.eg.reset()
|
|
#self.eg.c.nr_feat = self.parser.model.set_featuresC(self.eg.c.atoms, self.eg.c.features,
|
|
# self.stcls.c)
|
|
self.parser.moves.set_valid(self.eg.c.is_valid, self.stcls.c)
|
|
#self.parser.model.set_scoresC(self.eg.c.scores,
|
|
# self.eg.c.features, self.eg.c.nr_feat)
|
|
|
|
cdef Transition action = self.parser.moves.c[self.eg.guess]
|
|
return self.parser.moves.move_name(action.move, action.label)
|
|
|
|
def transition(self, action_name=None):
|
|
if action_name is None:
|
|
action_name = self.predict()
|
|
moves = {'S': 0, 'D': 1, 'L': 2, 'R': 3}
|
|
if action_name == '_':
|
|
action_name = self.predict()
|
|
action = self.parser.moves.lookup_transition(action_name)
|
|
elif action_name == 'L' or action_name == 'R':
|
|
self.predict()
|
|
move = moves[action_name]
|
|
clas = _arg_max_clas(self.eg.c.scores, move, self.parser.moves.c,
|
|
self.eg.c.nr_class)
|
|
action = self.parser.moves.c[clas]
|
|
else:
|
|
action = self.parser.moves.lookup_transition(action_name)
|
|
action.do(self.stcls.c, action.label)
|
|
|
|
def finish(self):
|
|
if self.stcls.is_final():
|
|
self.parser.moves.finalize_state(self.stcls.c)
|
|
self.doc.set_parse(self.stcls.c._sent)
|
|
self.parser.moves.finalize_doc(self.doc)
|
|
|
|
|
|
class ParserStateError(ValueError):
|
|
def __init__(self, doc):
|
|
ValueError.__init__(self,
|
|
"Error analysing doc -- no valid actions available. This should "
|
|
"never happen, so please report the error on the issue tracker. "
|
|
"Here's the thread to do so --- reopen it if it's closed:\n"
|
|
"https://github.com/spacy-io/spaCy/issues/429\n"
|
|
"Please include the text that the parser failed on, which is:\n"
|
|
"%s" % repr(doc.text))
|
|
|
|
cdef int arg_max_if_gold(const weight_t* scores, const weight_t* costs, int n) nogil:
|
|
cdef int best = -1
|
|
for i in range(n):
|
|
if costs[i] <= 0:
|
|
if best == -1 or scores[i] > scores[best]:
|
|
best = i
|
|
return best
|
|
|
|
|
|
cdef int _arg_max_clas(const weight_t* scores, int move, const Transition* actions,
|
|
int nr_class) except -1:
|
|
cdef weight_t score = 0
|
|
cdef int mode = -1
|
|
cdef int i
|
|
for i in range(nr_class):
|
|
if actions[i].move == move and (mode == -1 or scores[i] >= score):
|
|
mode = i
|
|
score = scores[i]
|
|
return mode
|