mirror of https://github.com/explosion/spaCy.git
628 lines
19 KiB
Python
628 lines
19 KiB
Python
import ujson
|
|
from thinc.api import add, layerize, chain, clone, concatenate, with_flatten
|
|
from thinc.neural import Model, Maxout, Softmax, Affine
|
|
from thinc.neural._classes.hash_embed import HashEmbed
|
|
from thinc.neural.ops import NumpyOps, CupyOps
|
|
from thinc.neural.util import get_array_module
|
|
import random
|
|
import cytoolz
|
|
|
|
from thinc.neural._classes.convolution import ExtractWindow
|
|
from thinc.neural._classes.static_vectors import StaticVectors
|
|
from thinc.neural._classes.batchnorm import BatchNorm as BN
|
|
from thinc.neural._classes.layernorm import LayerNorm as LN
|
|
from thinc.neural._classes.resnet import Residual
|
|
from thinc.neural import ReLu
|
|
from thinc.neural._classes.selu import SELU
|
|
from thinc import describe
|
|
from thinc.describe import Dimension, Synapses, Biases, Gradient
|
|
from thinc.neural._classes.affine import _set_dimensions_if_needed
|
|
from thinc.api import FeatureExtracter, with_getitem
|
|
from thinc.neural.pooling import Pooling, max_pool, mean_pool, sum_pool
|
|
from thinc.neural._classes.attention import ParametricAttention
|
|
from thinc.linear.linear import LinearModel
|
|
from thinc.api import uniqued, wrap, flatten_add_lengths, noop
|
|
|
|
|
|
from .attrs import ID, ORTH, LOWER, NORM, PREFIX, SUFFIX, SHAPE, TAG, DEP, CLUSTER
|
|
from .tokens.doc import Doc
|
|
from . import util
|
|
|
|
import numpy
|
|
import io
|
|
|
|
|
|
@layerize
|
|
def _flatten_add_lengths(seqs, pad=0, drop=0.):
|
|
ops = Model.ops
|
|
lengths = ops.asarray([len(seq) for seq in seqs], dtype='i')
|
|
def finish_update(d_X, sgd=None):
|
|
return ops.unflatten(d_X, lengths, pad=pad)
|
|
X = ops.flatten(seqs, pad=pad)
|
|
return (X, lengths), finish_update
|
|
|
|
|
|
@layerize
|
|
def _logistic(X, drop=0.):
|
|
xp = get_array_module(X)
|
|
if not isinstance(X, xp.ndarray):
|
|
X = xp.asarray(X)
|
|
# Clip to range (-10, 10)
|
|
X = xp.minimum(X, 10., X)
|
|
X = xp.maximum(X, -10., X)
|
|
Y = 1. / (1. + xp.exp(-X))
|
|
def logistic_bwd(dY, sgd=None):
|
|
dX = dY * (Y * (1-Y))
|
|
return dX
|
|
return Y, logistic_bwd
|
|
|
|
|
|
@layerize
|
|
def add_tuples(X, drop=0.):
|
|
"""Give inputs of sequence pairs, where each sequence is (vals, length),
|
|
sum the values, returning a single sequence.
|
|
|
|
If input is:
|
|
((vals1, length), (vals2, length)
|
|
Output is:
|
|
(vals1+vals2, length)
|
|
|
|
vals are a single tensor for the whole batch.
|
|
"""
|
|
(vals1, length1), (vals2, length2) = X
|
|
assert length1 == length2
|
|
|
|
def add_tuples_bwd(dY, sgd=None):
|
|
return (dY, dY)
|
|
|
|
return (vals1+vals2, length), add_tuples_bwd
|
|
|
|
|
|
def _zero_init(model):
|
|
def _zero_init_impl(self, X, y):
|
|
self.W.fill(0)
|
|
model.on_data_hooks.append(_zero_init_impl)
|
|
if model.W is not None:
|
|
model.W.fill(0.)
|
|
return model
|
|
|
|
|
|
@layerize
|
|
def _preprocess_doc(docs, drop=0.):
|
|
keys = [doc.to_array([LOWER]) for doc in docs]
|
|
keys = [a[:, 0] for a in keys]
|
|
ops = Model.ops
|
|
lengths = ops.asarray([arr.shape[0] for arr in keys])
|
|
keys = ops.xp.concatenate(keys)
|
|
vals = ops.allocate(keys.shape[0]) + 1
|
|
return (keys, vals, lengths), None
|
|
|
|
|
|
def _init_for_precomputed(W, ops):
|
|
if (W**2).sum() != 0.:
|
|
return
|
|
reshaped = W.reshape((W.shape[1], W.shape[0] * W.shape[2]))
|
|
ops.xavier_uniform_init(reshaped)
|
|
W[:] = reshaped.reshape(W.shape)
|
|
|
|
|
|
@describe.on_data(_set_dimensions_if_needed)
|
|
@describe.attributes(
|
|
nI=Dimension("Input size"),
|
|
nF=Dimension("Number of features"),
|
|
nO=Dimension("Output size"),
|
|
W=Synapses("Weights matrix",
|
|
lambda obj: (obj.nF, obj.nO, obj.nI),
|
|
lambda W, ops: _init_for_precomputed(W, ops)),
|
|
b=Biases("Bias vector",
|
|
lambda obj: (obj.nO,)),
|
|
d_W=Gradient("W"),
|
|
d_b=Gradient("b")
|
|
)
|
|
class PrecomputableAffine(Model):
|
|
def __init__(self, nO=None, nI=None, nF=None, **kwargs):
|
|
Model.__init__(self, **kwargs)
|
|
self.nO = nO
|
|
self.nI = nI
|
|
self.nF = nF
|
|
|
|
def begin_update(self, X, drop=0.):
|
|
# X: (b, i)
|
|
# Yf: (b, f, i)
|
|
# dY: (b, o)
|
|
# dYf: (b, f, o)
|
|
#Yf = numpy.einsum('bi,foi->bfo', X, self.W)
|
|
Yf = self.ops.xp.tensordot(
|
|
X, self.W, axes=[[1], [2]])
|
|
Yf += self.b
|
|
def backward(dY_ids, sgd=None):
|
|
tensordot = self.ops.xp.tensordot
|
|
dY, ids = dY_ids
|
|
Xf = X[ids]
|
|
|
|
#dXf = numpy.einsum('bo,foi->bfi', dY, self.W)
|
|
dXf = tensordot(dY, self.W, axes=[[1], [1]])
|
|
#dW = numpy.einsum('bo,bfi->ofi', dY, Xf)
|
|
dW = tensordot(dY, Xf, axes=[[0], [0]])
|
|
# ofi -> foi
|
|
self.d_W += dW.transpose((1, 0, 2))
|
|
self.d_b += dY.sum(axis=0)
|
|
|
|
if sgd is not None:
|
|
sgd(self._mem.weights, self._mem.gradient, key=self.id)
|
|
return dXf
|
|
return Yf, backward
|
|
|
|
|
|
@describe.on_data(_set_dimensions_if_needed)
|
|
@describe.attributes(
|
|
nI=Dimension("Input size"),
|
|
nF=Dimension("Number of features"),
|
|
nP=Dimension("Number of pieces"),
|
|
nO=Dimension("Output size"),
|
|
W=Synapses("Weights matrix",
|
|
lambda obj: (obj.nF, obj.nO, obj.nP, obj.nI),
|
|
lambda W, ops: ops.xavier_uniform_init(W)),
|
|
b=Biases("Bias vector",
|
|
lambda obj: (obj.nO, obj.nP)),
|
|
d_W=Gradient("W"),
|
|
d_b=Gradient("b")
|
|
)
|
|
class PrecomputableMaxouts(Model):
|
|
def __init__(self, nO=None, nI=None, nF=None, nP=3, **kwargs):
|
|
Model.__init__(self, **kwargs)
|
|
self.nO = nO
|
|
self.nP = nP
|
|
self.nI = nI
|
|
self.nF = nF
|
|
|
|
def begin_update(self, X, drop=0.):
|
|
# X: (b, i)
|
|
# Yfp: (b, f, o, p)
|
|
# Xf: (f, b, i)
|
|
# dYp: (b, o, p)
|
|
# W: (f, o, p, i)
|
|
# b: (o, p)
|
|
|
|
# bi,opfi->bfop
|
|
# bop,fopi->bfi
|
|
# bop,fbi->opfi : fopi
|
|
|
|
tensordot = self.ops.xp.tensordot
|
|
ascontiguous = self.ops.xp.ascontiguousarray
|
|
|
|
Yfp = tensordot(X, self.W, axes=[[1], [3]])
|
|
Yfp += self.b
|
|
|
|
def backward(dYp_ids, sgd=None):
|
|
dYp, ids = dYp_ids
|
|
Xf = X[ids]
|
|
|
|
dXf = tensordot(dYp, self.W, axes=[[1, 2], [1,2]])
|
|
dW = tensordot(dYp, Xf, axes=[[0], [0]])
|
|
|
|
self.d_W += dW.transpose((2, 0, 1, 3))
|
|
self.d_b += dYp.sum(axis=0)
|
|
|
|
if sgd is not None:
|
|
sgd(self._mem.weights, self._mem.gradient, key=self.id)
|
|
return dXf
|
|
return Yfp, backward
|
|
|
|
|
|
def drop_layer(layer, factor=2.):
|
|
def drop_layer_fwd(X, drop=0.):
|
|
if drop <= 0.:
|
|
return layer.begin_update(X, drop=drop)
|
|
else:
|
|
coinflip = layer.ops.xp.random.random()
|
|
if (coinflip / factor) >= drop:
|
|
return layer.begin_update(X, drop=drop)
|
|
else:
|
|
return X, lambda dX, sgd=None: dX
|
|
|
|
model = wrap(drop_layer_fwd, layer)
|
|
model.predict = layer
|
|
return model
|
|
|
|
|
|
def Tok2Vec(width, embed_size, pretrained_dims=0):
|
|
cols = [ID, NORM, PREFIX, SUFFIX, SHAPE, ORTH]
|
|
with Model.define_operators({'>>': chain, '|': concatenate, '**': clone, '+': add}):
|
|
norm = HashEmbed(width, embed_size, column=cols.index(NORM), name='embed_norm')
|
|
prefix = HashEmbed(width, embed_size//2, column=cols.index(PREFIX), name='embed_prefix')
|
|
suffix = HashEmbed(width, embed_size//2, column=cols.index(SUFFIX), name='embed_suffix')
|
|
shape = HashEmbed(width, embed_size//2, column=cols.index(SHAPE), name='embed_shape')
|
|
|
|
trained_vectors = (
|
|
FeatureExtracter(cols)
|
|
>> with_flatten(
|
|
uniqued(
|
|
(norm | prefix | suffix | shape)
|
|
>> LN(Maxout(width, width*4, pieces=3)), column=5)
|
|
)
|
|
)
|
|
if pretrained_dims >= 1:
|
|
embed = concatenate_lists(trained_vectors, SpacyVectors)
|
|
else:
|
|
embed = trained_vectors
|
|
convolution = Residual(ExtractWindow(nW=1) >> LN(Maxout(width, width*3, pieces=3)))
|
|
|
|
tok2vec = (
|
|
embed
|
|
>> with_flatten(
|
|
(Affine(width, width+pretrained_dims)
|
|
if pretrained_dims else noop())
|
|
>> convolution ** 4,
|
|
pad=4)
|
|
)
|
|
# Work around thinc API limitations :(. TODO: Revise in Thinc 7
|
|
tok2vec.nO = width
|
|
tok2vec.embed = embed
|
|
return tok2vec
|
|
|
|
|
|
def asarray(ops, dtype):
|
|
def forward(X, drop=0.):
|
|
return ops.asarray(X, dtype=dtype), None
|
|
return layerize(forward)
|
|
|
|
|
|
def foreach(layer):
|
|
def forward(Xs, drop=0.):
|
|
results = []
|
|
backprops = []
|
|
for X in Xs:
|
|
result, bp = layer.begin_update(X, drop=drop)
|
|
results.append(result)
|
|
backprops.append(bp)
|
|
def backward(d_results, sgd=None):
|
|
dXs = []
|
|
for d_result, backprop in zip(d_results, backprops):
|
|
dXs.append(backprop(d_result, sgd))
|
|
return dXs
|
|
return results, backward
|
|
model = layerize(forward)
|
|
model._layers.append(layer)
|
|
return model
|
|
|
|
|
|
def rebatch(size, layer):
|
|
ops = layer.ops
|
|
def forward(X, drop=0.):
|
|
if X.shape[0] < size:
|
|
return layer.begin_update(X)
|
|
parts = _divide_array(X, size)
|
|
results, bp_results = zip(*[layer.begin_update(p, drop=drop)
|
|
for p in parts])
|
|
y = ops.flatten(results)
|
|
def backward(dy, sgd=None):
|
|
d_parts = [bp(y, sgd=sgd) for bp, y in
|
|
zip(bp_results, _divide_array(dy, size))]
|
|
try:
|
|
dX = ops.flatten(d_parts)
|
|
except TypeError:
|
|
dX = None
|
|
except ValueError:
|
|
dX = None
|
|
return dX
|
|
return y, backward
|
|
model = layerize(forward)
|
|
model._layers.append(layer)
|
|
return model
|
|
|
|
|
|
def _divide_array(X, size):
|
|
parts = []
|
|
index = 0
|
|
while index < len(X):
|
|
parts.append(X[index : index + size])
|
|
index += size
|
|
return parts
|
|
|
|
|
|
def get_col(idx):
|
|
assert idx >= 0, idx
|
|
def forward(X, drop=0.):
|
|
assert idx >= 0, idx
|
|
if isinstance(X, numpy.ndarray):
|
|
ops = NumpyOps()
|
|
else:
|
|
ops = CupyOps()
|
|
output = ops.xp.ascontiguousarray(X[:, idx], dtype=X.dtype)
|
|
def backward(y, sgd=None):
|
|
assert idx >= 0, idx
|
|
dX = ops.allocate(X.shape)
|
|
dX[:, idx] += y
|
|
return dX
|
|
return output, backward
|
|
return layerize(forward)
|
|
|
|
|
|
def zero_init(model):
|
|
def _hook(self, X, y=None):
|
|
self.W.fill(0)
|
|
model.on_data_hooks.append(_hook)
|
|
return model
|
|
|
|
|
|
def doc2feats(cols=None):
|
|
if cols is None:
|
|
cols = [ID, NORM, PREFIX, SUFFIX, SHAPE, ORTH]
|
|
def forward(docs, drop=0.):
|
|
feats = []
|
|
for doc in docs:
|
|
feats.append(doc.to_array(cols))
|
|
return feats, None
|
|
model = layerize(forward)
|
|
model.cols = cols
|
|
return model
|
|
|
|
|
|
def print_shape(prefix):
|
|
def forward(X, drop=0.):
|
|
return X, lambda dX, **kwargs: dX
|
|
return layerize(forward)
|
|
|
|
|
|
@layerize
|
|
def get_token_vectors(tokens_attrs_vectors, drop=0.):
|
|
ops = Model.ops
|
|
tokens, attrs, vectors = tokens_attrs_vectors
|
|
def backward(d_output, sgd=None):
|
|
return (tokens, d_output)
|
|
return vectors, backward
|
|
|
|
|
|
def fine_tune(embedding, combine=None):
|
|
if combine is not None:
|
|
raise NotImplementedError(
|
|
"fine_tune currently only supports addition. Set combine=None")
|
|
def fine_tune_fwd(docs_tokvecs, drop=0.):
|
|
docs, tokvecs = docs_tokvecs
|
|
|
|
lengths = model.ops.asarray([len(doc) for doc in docs], dtype='i')
|
|
|
|
vecs, bp_vecs = embedding.begin_update(docs, drop=drop)
|
|
flat_tokvecs = embedding.ops.flatten(tokvecs)
|
|
flat_vecs = embedding.ops.flatten(vecs)
|
|
output = embedding.ops.unflatten(
|
|
(model.mix[0] * flat_tokvecs + model.mix[1] * flat_vecs), lengths)
|
|
|
|
def fine_tune_bwd(d_output, sgd=None):
|
|
flat_grad = model.ops.flatten(d_output)
|
|
model.d_mix[0] += flat_tokvecs.dot(flat_grad.T).sum()
|
|
model.d_mix[1] += flat_vecs.dot(flat_grad.T).sum()
|
|
|
|
bp_vecs([d_o * model.mix[1] for d_o in d_output], sgd=sgd)
|
|
if sgd is not None:
|
|
sgd(model._mem.weights, model._mem.gradient, key=model.id)
|
|
return [d_o * model.mix[0] for d_o in d_output]
|
|
return output, fine_tune_bwd
|
|
|
|
def fine_tune_predict(docs_tokvecs):
|
|
docs, tokvecs = docs_tokvecs
|
|
vecs = embedding(docs)
|
|
return [model.mix[0]*tv+model.mix[1]*v
|
|
for tv, v in zip(tokvecs, vecs)]
|
|
|
|
model = wrap(fine_tune_fwd, embedding)
|
|
model.mix = model._mem.add((model.id, 'mix'), (2,))
|
|
model.mix.fill(0.5)
|
|
model.d_mix = model._mem.add_gradient((model.id, 'd_mix'), (model.id, 'mix'))
|
|
model.predict = fine_tune_predict
|
|
return model
|
|
|
|
|
|
@layerize
|
|
def flatten(seqs, drop=0.):
|
|
if isinstance(seqs[0], numpy.ndarray):
|
|
ops = NumpyOps()
|
|
elif hasattr(CupyOps.xp, 'ndarray') and isinstance(seqs[0], CupyOps.xp.ndarray):
|
|
ops = CupyOps()
|
|
else:
|
|
raise ValueError("Unable to flatten sequence of type %s" % type(seqs[0]))
|
|
lengths = [len(seq) for seq in seqs]
|
|
def finish_update(d_X, sgd=None):
|
|
return ops.unflatten(d_X, lengths)
|
|
X = ops.xp.vstack(seqs)
|
|
return X, finish_update
|
|
|
|
|
|
@layerize
|
|
def logistic(X, drop=0.):
|
|
xp = get_array_module(X)
|
|
if not isinstance(X, xp.ndarray):
|
|
X = xp.asarray(X)
|
|
# Clip to range (-10, 10)
|
|
X = xp.minimum(X, 10., X)
|
|
X = xp.maximum(X, -10., X)
|
|
Y = 1. / (1. + xp.exp(-X))
|
|
def logistic_bwd(dY, sgd=None):
|
|
dX = dY * (Y * (1-Y))
|
|
return dX
|
|
return Y, logistic_bwd
|
|
|
|
|
|
def zero_init(model):
|
|
def _zero_init_impl(self, X, y):
|
|
self.W.fill(0)
|
|
model.on_data_hooks.append(_zero_init_impl)
|
|
return model
|
|
|
|
@layerize
|
|
def preprocess_doc(docs, drop=0.):
|
|
keys = [doc.to_array([LOWER]) for doc in docs]
|
|
keys = [a[:, 0] for a in keys]
|
|
ops = Model.ops
|
|
lengths = ops.asarray([arr.shape[0] for arr in keys])
|
|
keys = ops.xp.concatenate(keys)
|
|
vals = ops.allocate(keys.shape[0]) + 1
|
|
return (keys, vals, lengths), None
|
|
|
|
def getitem(i):
|
|
def getitem_fwd(X, drop=0.):
|
|
return X[i], None
|
|
return layerize(getitem_fwd)
|
|
|
|
def build_tagger_model(nr_class, token_vector_width, pretrained_dims=0, **cfg):
|
|
embed_size = util.env_opt('embed_size', 4000)
|
|
with Model.define_operators({'>>': chain, '+': add}):
|
|
# Input: (doc, tensor) tuples
|
|
private_tok2vec = Tok2Vec(token_vector_width, embed_size,
|
|
pretrained_dims=pretrained_dims)
|
|
model = (
|
|
fine_tune(private_tok2vec)
|
|
>> with_flatten(
|
|
Maxout(token_vector_width, token_vector_width)
|
|
>> Softmax(nr_class, token_vector_width)
|
|
)
|
|
)
|
|
model.nI = None
|
|
return model
|
|
|
|
|
|
@layerize
|
|
def SpacyVectors(docs, drop=0.):
|
|
xp = get_array_module(docs[0].vocab.vectors.data)
|
|
width = docs[0].vocab.vectors.data.shape[1]
|
|
batch = []
|
|
for doc in docs:
|
|
indices = numpy.zeros((len(doc),), dtype='i')
|
|
for i, word in enumerate(doc):
|
|
if word.orth in doc.vocab.vectors.key2row:
|
|
indices[i] = doc.vocab.vectors.key2row[word.orth]
|
|
else:
|
|
indices[i] = 0
|
|
vectors = doc.vocab.vectors.data[indices]
|
|
batch.append(vectors)
|
|
return batch, None
|
|
|
|
|
|
def foreach(layer, drop_factor=1.0):
|
|
'''Map a layer across elements in a list'''
|
|
def foreach_fwd(Xs, drop=0.):
|
|
drop *= drop_factor
|
|
ys = []
|
|
backprops = []
|
|
for X in Xs:
|
|
y, bp_y = layer.begin_update(X, drop=drop)
|
|
ys.append(y)
|
|
backprops.append(bp_y)
|
|
def foreach_bwd(d_ys, sgd=None):
|
|
d_Xs = []
|
|
for d_y, bp_y in zip(d_ys, backprops):
|
|
if bp_y is not None and bp_y is not None:
|
|
d_Xs.append(d_y, sgd=sgd)
|
|
else:
|
|
d_Xs.append(None)
|
|
return d_Xs
|
|
return ys, foreach_bwd
|
|
model = wrap(foreach_fwd, layer)
|
|
return model
|
|
|
|
|
|
def build_text_classifier(nr_class, width=64, **cfg):
|
|
nr_vector = cfg.get('nr_vector', 5000)
|
|
with Model.define_operators({'>>': chain, '+': add, '|': concatenate,
|
|
'**': clone}):
|
|
if cfg.get('low_data'):
|
|
model = (
|
|
SpacyVectors
|
|
>> flatten_add_lengths
|
|
>> with_getitem(0,
|
|
Affine(width, 300)
|
|
)
|
|
>> ParametricAttention(width)
|
|
>> Pooling(sum_pool)
|
|
>> Residual(ReLu(width, width)) ** 2
|
|
>> zero_init(Affine(nr_class, width, drop_factor=0.0))
|
|
>> logistic
|
|
)
|
|
return model
|
|
|
|
|
|
lower = HashEmbed(width, nr_vector, column=1)
|
|
prefix = HashEmbed(width//2, nr_vector, column=2)
|
|
suffix = HashEmbed(width//2, nr_vector, column=3)
|
|
shape = HashEmbed(width//2, nr_vector, column=4)
|
|
|
|
trained_vectors = (
|
|
FeatureExtracter([ORTH, LOWER, PREFIX, SUFFIX, SHAPE, ID])
|
|
>> with_flatten(
|
|
uniqued(
|
|
(lower | prefix | suffix | shape)
|
|
>> LN(Maxout(width, width+(width//2)*3)),
|
|
column=0
|
|
)
|
|
)
|
|
)
|
|
|
|
static_vectors = (
|
|
SpacyVectors
|
|
>> with_flatten(Affine(width, 300))
|
|
)
|
|
|
|
cnn_model = (
|
|
# TODO Make concatenate support lists
|
|
concatenate_lists(trained_vectors, static_vectors)
|
|
>> with_flatten(
|
|
LN(Maxout(width, width*2))
|
|
>> Residual(
|
|
(ExtractWindow(nW=1) >> zero_init(Maxout(width, width*3)))
|
|
) ** 2, pad=2
|
|
)
|
|
>> flatten_add_lengths
|
|
>> ParametricAttention(width)
|
|
>> Pooling(sum_pool)
|
|
>> Residual(zero_init(Maxout(width, width)))
|
|
>> zero_init(Affine(nr_class, width, drop_factor=0.0))
|
|
)
|
|
|
|
linear_model = (
|
|
_preprocess_doc
|
|
>> LinearModel(nr_class, drop_factor=0.)
|
|
)
|
|
|
|
model = (
|
|
(linear_model | cnn_model)
|
|
>> zero_init(Affine(nr_class, nr_class*2, drop_factor=0.0))
|
|
>> logistic
|
|
)
|
|
|
|
model.lsuv = False
|
|
return model
|
|
|
|
@layerize
|
|
def flatten(seqs, drop=0.):
|
|
ops = Model.ops
|
|
lengths = ops.asarray([len(seq) for seq in seqs], dtype='i')
|
|
def finish_update(d_X, sgd=None):
|
|
return ops.unflatten(d_X, lengths, pad=0)
|
|
X = ops.flatten(seqs, pad=0)
|
|
return X, finish_update
|
|
|
|
|
|
def concatenate_lists(*layers, **kwargs): # pragma: no cover
|
|
'''Compose two or more models `f`, `g`, etc, such that their outputs are
|
|
concatenated, i.e. `concatenate(f, g)(x)` computes `hstack(f(x), g(x))`
|
|
'''
|
|
if not layers:
|
|
return noop()
|
|
drop_factor = kwargs.get('drop_factor', 1.0)
|
|
ops = layers[0].ops
|
|
layers = [chain(layer, flatten) for layer in layers]
|
|
concat = concatenate(*layers)
|
|
def concatenate_lists_fwd(Xs, drop=0.):
|
|
drop *= drop_factor
|
|
lengths = ops.asarray([len(X) for X in Xs], dtype='i')
|
|
flat_y, bp_flat_y = concat.begin_update(Xs, drop=drop)
|
|
ys = ops.unflatten(flat_y, lengths)
|
|
def concatenate_lists_bwd(d_ys, sgd=None):
|
|
return bp_flat_y(ops.flatten(d_ys), sgd=sgd)
|
|
return ys, concatenate_lists_bwd
|
|
model = wrap(concatenate_lists_fwd, concat)
|
|
return model
|
|
|
|
|