mirror of https://github.com/explosion/spaCy.git
90 lines
2.5 KiB
Python
90 lines
2.5 KiB
Python
"""Some quick tests that don't depend on data files or on pytest, for debugging the
|
|
MS windows build issues."""
|
|
from __future__ import print_function, unicode_literals
|
|
|
|
import unittest
|
|
import re
|
|
|
|
from spacy.lemmatizer import Lemmatizer
|
|
from spacy.morphology import Morphology
|
|
from spacy.strings import StringStore
|
|
from spacy.vocab import Vocab
|
|
from spacy.tokenizer import Tokenizer
|
|
from spacy.syntax.arc_eager import ArcEager
|
|
from spacy._ml import Model
|
|
from spacy.tagger import Tagger
|
|
from spacy.syntax.parser import Parser
|
|
from spacy.matcher import Matcher
|
|
|
|
|
|
class TestStringStore(unittest.TestCase):
|
|
def test_encode_decode(self):
|
|
strings = StringStore()
|
|
hello_id = strings[u'Hello']
|
|
world_id = strings[u'World']
|
|
|
|
self.assertNotEqual(hello_id, world_id)
|
|
|
|
self.assertEqual(strings[hello_id], u'Hello')
|
|
self.assertEqual(strings[world_id], u'World')
|
|
|
|
self.assertEqual(strings[u'Hello'], hello_id)
|
|
self.assertEqual(strings[u'World'], world_id)
|
|
|
|
|
|
class TestMorphology(unittest.TestCase):
|
|
def test_create(self):
|
|
lemmatizer = Lemmatizer({}, {}, {})
|
|
strings = StringStore()
|
|
lemmatizer = Lemmatizer({}, {}, {})
|
|
morphology = Morphology(strings, {}, lemmatizer)
|
|
|
|
|
|
class TestVocab(unittest.TestCase):
|
|
def test_create(self):
|
|
vocab = Vocab()
|
|
|
|
def test_get_lexeme(self):
|
|
vocab = Vocab()
|
|
lexeme = vocab[u'Hello']
|
|
assert lexeme.orth_ == u'Hello'
|
|
|
|
|
|
class TestTokenizer(unittest.TestCase):
|
|
def test_create(self):
|
|
vocab = Vocab()
|
|
dummy_re = re.compile(r'sklfb;s')
|
|
tokenizer = Tokenizer(vocab, {}, dummy_re, dummy_re, dummy_re)
|
|
doc = tokenizer(u'I am a document.')
|
|
|
|
self.assertEqual(len(doc), 4)
|
|
|
|
|
|
class TestTagger(unittest.TestCase):
|
|
def test_create(self):
|
|
vocab = Vocab()
|
|
templates = ((1,),)
|
|
model = Model(vocab.morphology.n_tags, templates, model_loc=None)
|
|
tagger = Tagger(vocab, model)
|
|
|
|
|
|
class TestParser(unittest.TestCase):
|
|
def test_create(self):
|
|
vocab = Vocab()
|
|
templates = ((1,),)
|
|
labels_by_action = {0: ['One', 'Two'], 1: ['Two', 'Three']}
|
|
transition_system = ArcEager(vocab.strings, labels_by_action)
|
|
model = Model(vocab.morphology.n_tags, templates, model_loc=None)
|
|
|
|
parser = Parser(vocab.strings, transition_system, model)
|
|
|
|
|
|
class TestMatcher(unittest.TestCase):
|
|
def test_create(self):
|
|
vocab = Vocab()
|
|
matcher = Matcher(vocab, [])
|
|
|
|
|
|
if __name__ == '__main__':
|
|
unittest.main()
|