spaCy/bin/wiki_entity_linking/training_set_creator.py

396 lines
14 KiB
Python

# coding: utf-8
from __future__ import unicode_literals
import logging
import random
import re
import bz2
import json
from functools import partial
from spacy.gold import GoldParse
from bin.wiki_entity_linking import kb_creator
"""
Process Wikipedia interlinks to generate a training dataset for the EL algorithm.
Gold-standard entities are stored in one file in standoff format (by character offset).
"""
ENTITY_FILE = "gold_entities.csv"
logger = logging.getLogger(__name__)
def create_training_examples_and_descriptions(wikipedia_input,
entity_def_input,
description_output,
training_output,
parse_descriptions,
limit=None):
wp_to_id = kb_creator.get_entity_to_id(entity_def_input)
_process_wikipedia_texts(wikipedia_input,
wp_to_id,
description_output,
training_output,
parse_descriptions,
limit)
def _process_wikipedia_texts(wikipedia_input,
wp_to_id,
output,
training_output,
parse_descriptions,
limit=None):
"""
Read the XML wikipedia data to parse out training data:
raw text data + positive instances
"""
title_regex = re.compile(r"(?<=<title>).*(?=</title>)")
id_regex = re.compile(r"(?<=<id>)\d*(?=</id>)")
read_ids = set()
with output.open("a", encoding="utf8") as descr_file, training_output.open("w", encoding="utf8") as entity_file:
if parse_descriptions:
_write_training_description(descr_file, "WD_id", "description")
with bz2.open(wikipedia_input, mode="rb") as file:
article_count = 0
article_text = ""
article_title = None
article_id = None
reading_text = False
reading_revision = False
logger.info("Processed {} articles".format(article_count))
for line in file:
clean_line = line.strip().decode("utf-8")
if clean_line == "<revision>":
reading_revision = True
elif clean_line == "</revision>":
reading_revision = False
# Start reading new page
if clean_line == "<page>":
article_text = ""
article_title = None
article_id = None
# finished reading this page
elif clean_line == "</page>":
if article_id:
clean_text, entities = _process_wp_text(
article_title,
article_text,
wp_to_id
)
if clean_text is not None and entities is not None:
_write_training_entities(entity_file,
article_id,
clean_text,
entities)
if article_title in wp_to_id and parse_descriptions:
description = " ".join(clean_text[:1000].split(" ")[:-1])
_write_training_description(
descr_file,
wp_to_id[article_title],
description
)
article_count += 1
if article_count % 10000 == 0:
logger.info("Processed {} articles".format(article_count))
if limit and article_count >= limit:
break
article_text = ""
article_title = None
article_id = None
reading_text = False
reading_revision = False
# start reading text within a page
if "<text" in clean_line:
reading_text = True
if reading_text:
article_text += " " + clean_line
# stop reading text within a page (we assume a new page doesn't start on the same line)
if "</text" in clean_line:
reading_text = False
# read the ID of this article (outside the revision portion of the document)
if not reading_revision:
ids = id_regex.search(clean_line)
if ids:
article_id = ids[0]
if article_id in read_ids:
logger.info(
"Found duplicate article ID", article_id, clean_line
) # This should never happen ...
read_ids.add(article_id)
# read the title of this article (outside the revision portion of the document)
if not reading_revision:
titles = title_regex.search(clean_line)
if titles:
article_title = titles[0].strip()
logger.info("Finished. Processed {} articles".format(article_count))
text_regex = re.compile(r"(?<=<text xml:space=\"preserve\">).*(?=</text)")
info_regex = re.compile(r"{[^{]*?}")
htlm_regex = re.compile(r"&lt;!--[^-]*--&gt;")
category_regex = re.compile(r"\[\[Category:[^\[]*]]")
file_regex = re.compile(r"\[\[File:[^[\]]+]]")
ref_regex = re.compile(r"&lt;ref.*?&gt;") # non-greedy
ref_2_regex = re.compile(r"&lt;/ref.*?&gt;") # non-greedy
def _process_wp_text(article_title, article_text, wp_to_id):
# ignore meta Wikipedia pages
if (
article_title.startswith("Wikipedia:") or
article_title.startswith("Kategori:")
):
return None, None
# remove the text tags
text_search = text_regex.search(article_text)
if text_search is None:
return None, None
text = text_search.group(0)
# stop processing if this is a redirect page
if text.startswith("#REDIRECT"):
return None, None
# get the raw text without markup etc, keeping only interwiki links
clean_text, entities = _remove_links(_get_clean_wp_text(text), wp_to_id)
return clean_text, entities
def _get_clean_wp_text(article_text):
clean_text = article_text.strip()
# remove bolding & italic markup
clean_text = clean_text.replace("'''", "")
clean_text = clean_text.replace("''", "")
# remove nested {{info}} statements by removing the inner/smallest ones first and iterating
try_again = True
previous_length = len(clean_text)
while try_again:
clean_text = info_regex.sub(
"", clean_text
) # non-greedy match excluding a nested {
if len(clean_text) < previous_length:
try_again = True
else:
try_again = False
previous_length = len(clean_text)
# remove HTML comments
clean_text = htlm_regex.sub("", clean_text)
# remove Category and File statements
clean_text = category_regex.sub("", clean_text)
clean_text = file_regex.sub("", clean_text)
# remove multiple =
while "==" in clean_text:
clean_text = clean_text.replace("==", "=")
clean_text = clean_text.replace(". =", ".")
clean_text = clean_text.replace(" = ", ". ")
clean_text = clean_text.replace("= ", ".")
clean_text = clean_text.replace(" =", "")
# remove refs (non-greedy match)
clean_text = ref_regex.sub("", clean_text)
clean_text = ref_2_regex.sub("", clean_text)
# remove additional wikiformatting
clean_text = re.sub(r"&lt;blockquote&gt;", "", clean_text)
clean_text = re.sub(r"&lt;/blockquote&gt;", "", clean_text)
# change special characters back to normal ones
clean_text = clean_text.replace(r"&lt;", "<")
clean_text = clean_text.replace(r"&gt;", ">")
clean_text = clean_text.replace(r"&quot;", '"')
clean_text = clean_text.replace(r"&amp;nbsp;", " ")
clean_text = clean_text.replace(r"&amp;", "&")
# remove multiple spaces
while " " in clean_text:
clean_text = clean_text.replace(" ", " ")
return clean_text.strip()
def _remove_links(clean_text, wp_to_id):
# read the text char by char to get the right offsets for the interwiki links
entities = []
final_text = ""
open_read = 0
reading_text = True
reading_entity = False
reading_mention = False
reading_special_case = False
entity_buffer = ""
mention_buffer = ""
for index, letter in enumerate(clean_text):
if letter == "[":
open_read += 1
elif letter == "]":
open_read -= 1
elif letter == "|":
if reading_text:
final_text += letter
# switch from reading entity to mention in the [[entity|mention]] pattern
elif reading_entity:
reading_text = False
reading_entity = False
reading_mention = True
else:
reading_special_case = True
else:
if reading_entity:
entity_buffer += letter
elif reading_mention:
mention_buffer += letter
elif reading_text:
final_text += letter
else:
raise ValueError("Not sure at point", clean_text[index - 2: index + 2])
if open_read > 2:
reading_special_case = True
if open_read == 2 and reading_text:
reading_text = False
reading_entity = True
reading_mention = False
# we just finished reading an entity
if open_read == 0 and not reading_text:
if "#" in entity_buffer or entity_buffer.startswith(":"):
reading_special_case = True
# Ignore cases with nested structures like File: handles etc
if not reading_special_case:
if not mention_buffer:
mention_buffer = entity_buffer
start = len(final_text)
end = start + len(mention_buffer)
qid = wp_to_id.get(entity_buffer, None)
if qid:
entities.append((mention_buffer, qid, start, end))
final_text += mention_buffer
entity_buffer = ""
mention_buffer = ""
reading_text = True
reading_entity = False
reading_mention = False
reading_special_case = False
return final_text, entities
def _write_training_description(outputfile, qid, description):
if description is not None:
line = str(qid) + "|" + description + "\n"
outputfile.write(line)
def _write_training_entities(outputfile, article_id, clean_text, entities):
entities_data = [{"alias": ent[0], "entity": ent[1], "start": ent[2], "end": ent[3]} for ent in entities]
line = json.dumps(
{
"article_id": article_id,
"clean_text": clean_text,
"entities": entities_data
},
ensure_ascii=False) + "\n"
outputfile.write(line)
def read_training(nlp, entity_file_path, dev, limit, kb):
""" This method provides training examples that correspond to the entity annotations found by the nlp object.
For training,, it will include negative training examples by using the candidate generator,
and it will only keep positive training examples that can be found by using the candidate generator.
For testing, it will include all positive examples only."""
from tqdm import tqdm
data = []
num_entities = 0
get_gold_parse = partial(_get_gold_parse, dev=dev, kb=kb)
logger.info("Reading {} data with limit {}".format('dev' if dev else 'train', limit))
with entity_file_path.open("r", encoding="utf8") as file:
with tqdm(total=limit, leave=False) as pbar:
for i, line in enumerate(file):
example = json.loads(line)
article_id = example["article_id"]
clean_text = example["clean_text"]
entities = example["entities"]
if dev != is_dev(article_id) or len(clean_text) >= 30000:
continue
doc = nlp(clean_text)
gold = get_gold_parse(doc, entities)
if gold and len(gold.links) > 0:
data.append((doc, gold))
num_entities += len(gold.links)
pbar.update(len(gold.links))
if limit and num_entities >= limit:
break
logger.info("Read {} entities in {} articles".format(num_entities, len(data)))
return data
def _get_gold_parse(doc, entities, dev, kb):
gold_entities = {}
tagged_ent_positions = set(
[(ent.start_char, ent.end_char) for ent in doc.ents]
)
for entity in entities:
entity_id = entity["entity"]
alias = entity["alias"]
start = entity["start"]
end = entity["end"]
candidates = kb.get_candidates(alias)
candidate_ids = [
c.entity_ for c in candidates
]
should_add_ent = (
dev or
(
(start, end) in tagged_ent_positions and
entity_id in candidate_ids and
len(candidates) > 1
)
)
if should_add_ent:
value_by_id = {entity_id: 1.0}
if not dev:
random.shuffle(candidate_ids)
value_by_id.update({
kb_id: 0.0
for kb_id in candidate_ids
if kb_id != entity_id
})
gold_entities[(start, end)] = value_by_id
return GoldParse(doc, links=gold_entities)
def is_dev(article_id):
return article_id.endswith("3")