spaCy/bin/parser/train.py

223 lines
7.7 KiB
Python
Executable File

#!/usr/bin/env python
from __future__ import division
from __future__ import unicode_literals
import os
from os import path
import shutil
import codecs
import random
import plac
import cProfile
import pstats
import re
import spacy.util
from spacy.en import English
from spacy.en.pos import POS_TEMPLATES, POS_TAGS, setup_model_dir
from spacy.syntax.util import Config
from spacy.gold import read_json_file
from spacy.gold import GoldParse
from spacy.scorer import Scorer
def _corrupt(c, noise_level):
if random.random() >= noise_level:
return c
elif c == ' ':
return '\n'
elif c == '\n':
return ' '
elif c in ['.', "'", "!", "?"]:
return ''
else:
return c.lower()
def add_noise(orig, noise_level):
if random.random() >= noise_level:
return orig
elif type(orig) == list:
corrupted = [_corrupt(word, noise_level) for word in orig]
corrupted = [w for w in corrupted if w]
return corrupted
else:
return ''.join(_corrupt(c, noise_level) for c in orig)
def score_model(scorer, nlp, raw_text, annot_tuples):
if raw_text is None:
tokens = nlp.tokenizer.tokens_from_list(annot_tuples[1])
else:
tokens = nlp.tokenizer(raw_text)
nlp.tagger(tokens)
nlp.entity(tokens)
nlp.parser(tokens)
gold = GoldParse(tokens, annot_tuples)
scorer.score(tokens, gold, verbose=False)
def _merge_sents(sents):
m_deps = [[], [], [], [], [], []]
m_brackets = []
i = 0
for (ids, words, tags, heads, labels, ner), brackets in sents:
m_deps[0].extend(id_ + i for id_ in ids)
m_deps[1].extend(words)
m_deps[2].extend(tags)
m_deps[3].extend(head + i for head in heads)
m_deps[4].extend(labels)
m_deps[5].extend(ner)
m_brackets.extend((b['first'] + i, b['last'] + i, b['label']) for b in brackets)
i += len(ids)
return [(m_deps, m_brackets)]
def train(Language, gold_tuples, model_dir, n_iter=15, feat_set=u'basic',
seed=0, gold_preproc=False, n_sents=0, corruption_level=0,
beam_width=1):
dep_model_dir = path.join(model_dir, 'deps')
pos_model_dir = path.join(model_dir, 'pos')
ner_model_dir = path.join(model_dir, 'ner')
if path.exists(dep_model_dir):
shutil.rmtree(dep_model_dir)
if path.exists(pos_model_dir):
shutil.rmtree(pos_model_dir)
if path.exists(ner_model_dir):
shutil.rmtree(ner_model_dir)
os.mkdir(dep_model_dir)
os.mkdir(pos_model_dir)
os.mkdir(ner_model_dir)
setup_model_dir(sorted(POS_TAGS.keys()), POS_TAGS, POS_TEMPLATES, pos_model_dir)
Config.write(dep_model_dir, 'config', features=feat_set, seed=seed,
labels=Language.ParserTransitionSystem.get_labels(gold_tuples),
beam_width=beam_width)
Config.write(ner_model_dir, 'config', features='ner', seed=seed,
labels=Language.EntityTransitionSystem.get_labels(gold_tuples),
beam_width=0)
if n_sents > 0:
gold_tuples = gold_tuples[:n_sents]
nlp = Language(data_dir=model_dir)
print "Itn.\tP.Loss\tUAS\tNER F.\tTag %\tToken %"
for itn in range(n_iter):
scorer = Scorer()
loss = 0
for raw_text, sents in gold_tuples:
if gold_preproc:
raw_text = None
else:
sents = _merge_sents(sents)
for annot_tuples, ctnt in sents:
if len(annot_tuples[1]) == 1:
continue
score_model(scorer, nlp, raw_text, annot_tuples)
if raw_text is None:
words = add_noise(annot_tuples[1], corruption_level)
tokens = nlp.tokenizer.tokens_from_list(words)
else:
raw_text = add_noise(raw_text, corruption_level)
tokens = nlp.tokenizer(raw_text)
nlp.tagger(tokens)
gold = GoldParse(tokens, annot_tuples, make_projective=True)
loss += nlp.parser.train(tokens, gold)
nlp.entity.train(tokens, gold)
nlp.tagger.train(tokens, gold.tags)
random.shuffle(gold_tuples)
print '%d:\t%d\t%.3f\t%.3f\t%.3f\t%.3f' % (itn, loss, scorer.uas, scorer.ents_f,
scorer.tags_acc,
scorer.token_acc)
nlp.parser.model.end_training()
nlp.entity.model.end_training()
nlp.tagger.model.end_training()
nlp.vocab.strings.dump(path.join(model_dir, 'vocab', 'strings.txt'))
def evaluate(Language, gold_tuples, model_dir, gold_preproc=False, verbose=False,
beam_width=None):
nlp = Language(data_dir=model_dir)
if beam_width is not None:
nlp.parser.cfg.beam_width = beam_width
scorer = Scorer()
for raw_text, sents in gold_tuples:
if gold_preproc:
raw_text = None
else:
sents = _merge_sents(sents)
for annot_tuples, brackets in sents:
if raw_text is None:
tokens = nlp.tokenizer.tokens_from_list(annot_tuples[1])
nlp.tagger(tokens)
nlp.entity(tokens)
nlp.parser(tokens)
else:
tokens = nlp(raw_text, merge_mwes=False)
gold = GoldParse(tokens, annot_tuples)
scorer.score(tokens, gold, verbose=verbose)
return scorer
def write_parses(Language, dev_loc, model_dir, out_loc):
nlp = Language()
gold_tuples = read_docparse_file(dev_loc)
scorer = Scorer()
out_file = codecs.open(out_loc, 'w', 'utf8')
for raw_text, segmented_text, annot_tuples in gold_tuples:
tokens = nlp(raw_text)
for t in tokens:
out_file.write(
'%s\t%s\t%s\t%s\n' % (t.orth_, t.tag_, t.head.orth_, t.dep_)
)
return scorer
@plac.annotations(
train_loc=("Location of training file or directory"),
dev_loc=("Location of development file or directory"),
model_dir=("Location of output model directory",),
eval_only=("Skip training, and only evaluate", "flag", "e", bool),
corruption_level=("Amount of noise to add to training data", "option", "c", float),
gold_preproc=("Use gold-standard sentence boundaries in training?", "flag", "g", bool),
out_loc=("Out location", "option", "o", str),
n_sents=("Number of training sentences", "option", "n", int),
n_iter=("Number of training iterations", "option", "i", int),
beam_width=("Number of candidates to maintain in the beam", "option", "k", int),
verbose=("Verbose error reporting", "flag", "v", bool),
debug=("Debug mode", "flag", "d", bool)
)
def main(train_loc, dev_loc, model_dir, n_sents=0, n_iter=15, out_loc="", verbose=False,
debug=False, corruption_level=0.0, gold_preproc=False, beam_width=1,
eval_only=False):
if not eval_only:
gold_train = list(read_json_file(train_loc))
train(English, gold_train, model_dir,
feat_set='basic' if not debug else 'debug',
gold_preproc=gold_preproc, n_sents=n_sents,
corruption_level=corruption_level, n_iter=n_iter,
beam_width=beam_width)
if out_loc:
write_parses(English, dev_loc, model_dir, out_loc)
scorer = evaluate(English, list(read_json_file(dev_loc)),
model_dir, gold_preproc=gold_preproc, verbose=verbose,
beam_width=beam_width)
print 'TOK', 100-scorer.token_acc
print 'POS', scorer.tags_acc
print 'UAS', scorer.uas
print 'LAS', scorer.las
print 'NER P', scorer.ents_p
print 'NER R', scorer.ents_r
print 'NER F', scorer.ents_f
if __name__ == '__main__':
plac.call(main)