spaCy/website/docs/usage/_data.json

306 lines
12 KiB
JSON
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

{
"sidebar": {
"Get started": {
"Installation": "./",
"Lightning tour": "lightning-tour"
},
"Workflows": {
"Loading the pipeline": "language-processing-pipeline",
"Processing text": "processing-text",
"spaCy's data model": "data-model",
"Using the parse": "dependency-parse",
"Custom pipelines": "customizing-pipeline",
"Rule-based matching": "rule-based-matching",
"Word vectors": "word-vectors-similarities",
"Deep learning": "deep-learning",
"Custom tokenization": "customizing-tokenizer",
"Training": "training"
},
"Examples": {
"Tutorials": "tutorials",
"Showcase": "showcase"
}
},
"index": {
"title": "Install spaCy",
"next": "lightning-tour"
},
"lightning-tour": {
"title": "Lightning tour"
},
"language-processing-pipeline": {
"title": "Loading a language processing pipeline",
"next": "processing-text"
},
"customizing-pipeline": {
"title": "Customizing the pipeline",
"next": "customizing-tokenizer"
},
"processing-text": {
"title": "Processing text",
"next": "data-model"
},
"data-model": {
"title": "Understanding spaCy's data model"
},
"dependency-parse": {
"title": "Using the dependency parse"
},
"rule-based-matching": {
"title": "Rule-based matching"
},
"word-vectors-similarities": {
"title": "Using word vectors and semantic similarities"
},
"deep-learning": {
"title": "Hooking a deep learning model into spaCy"
},
"customizing-tokenizer": {
"title": "Customizing the tokenizer",
"next": "training"
},
"training": {
"title": "Training the tagger, parser and entity recognizer"
},
"showcase": {
"title": "Showcase",
"libraries": {
"spacy-nlp": {
"url": "https://github.com/kengz/spacy-nlp",
"author": "Wah Loon Keng",
"description": "Expose spaCy NLP text parsing to Node.js (and other languages) via Socket.IO."
},
"spacy-api-docker": {
"url": "https://github.com/jgontrum/spacy-api-docker",
"author": "Johannes Gontrum",
"description": "spaCy accessed by a REST API, wrapped in a Docker container."
},
"textacy": {
"url": "https://github.com/chartbeat-labs/textacy",
"author": " Burton DeWilde (Chartbeat)",
"description": "Higher-level NLP built on spaCy."
},
"visual-qa": {
"url": "https://github.com/avisingh599/visual-qa",
"author": "Avi Singh",
"description": "Keras-based LSTM/CNN models for Visual Question Answering."
}
},
"visualizations": {
"displaCy": {
"url": "https://demos.explosion.ai/displacy",
"author": "Ines Montani",
"description": "An open-source NLP visualiser for the modern web.",
"image": "displacy.jpg"
},
"displaCy ENT": {
"url": "https://demos.explosion.ai/displacy-ent",
"author": "Ines Montani",
"description": "An open-source named entity visualiser for the modern web.",
"image": "displacy-ent.jpg"
}
},
"products": {
"sense2vec": {
"url": "https://demos.explosion.ai/sense2vec",
"author": "Matthew Honnibal and Ines Montani",
"description": "Semantic analysis of the Reddit hivemind.",
"image": "sense2vec.jpg"
},
"TruthBot": {
"url": "http://summerscope.github.io/govhack/2016/truthbot/",
"author": "Team Truthbot",
"description": "The world's first artificially intelligent fact checking robot.",
"image": "truthbot.jpg"
},
"Laice": {
"url": "https://github.com/kendricktan/laice",
"author": "Kendrick Tan",
"description": "Train your own Natural Language Processor from a browser.",
"image": "laice.jpg"
},
"FoxType": {
"url": "https://foxtype.com",
"description": "Smart tools for writers.",
"image": "foxtype.jpg"
},
"Kip": {
"url": "https://kipthis.com",
"description": "An AI chat assistant for group shopping.",
"image": "kip.jpg"
},
"Indico": {
"url": "https://indico.io",
"description": "Text and image analysis powered by Machine Learning.",
"image": "indico.jpg"
},
"TextAnalysisOnline": {
"url": "http://textanalysisonline.com",
"description": "Online tool for spaCy's tokenizer, parser, NER and more.",
"image": "textanalysis.jpg"
}
},
"books": {
"Introduction to Machine Learning with Python: A Guide for Data Scientists": {
"url": "https://books.google.de/books?id=vbQlDQAAQBAJ",
"author": "Andreas C. Müller and Sarah Guido (O'Reilly, 2016)",
"description": "Andreas is a lead developer of Scikit-Learn, and Sarah is a lead data scientist at Mashable. We're proud to get a mention."
}
},
"research": {
"Refactoring the Genia Event Extraction Shared Task Toward a General Framework for IE-Driven KB Development": {
"url": "https://www.semanticscholar.org/paper/Refactoring-the-Genia-Event-Extraction-Shared-Task-Kim-Wang/06d94b64a7bd2d3433f57caddad5084435d6a91f",
"author": "Jin-Dong Kim et al. (2016)"
},
"Mixing Dirichlet Topic Models and Word Embeddings to Make lda2vec": {
"url": "https://www.semanticscholar.org/paper/Mixing-Dirichlet-Topic-Models-and-Word-Embeddings-Moody/bf8116e06f7b498c6abfbf97aeb67d0838c08609",
"author": "Christopher E. Moody (2016)"
},
"Predicting Pre-click Quality for Native Advertisements": {
"url": "https://www.semanticscholar.org/paper/Predicting-Pre-click-Quality-for-Native-Zhou-Redi/564985430ff2fbc3a9daa9c2af8997b7f5046da8",
"author": "Ke Zhou et al. (2016)"
},
"Threat detection in online discussions": {
"url": "https://www.semanticscholar.org/paper/Threat-detection-in-online-discussions-Wester-%C3%98vrelid/f4150e2fb4d8646ebc2ea84f1a86afa1b593239b",
"author": "Aksel Wester et al. (2016)"
},
"The language of mental health problems in social media": {
"url": "https://www.semanticscholar.org/paper/The-language-of-mental-health-problems-in-social-Gkotsis-Oellrich/537db6c2984514d92a754a591841e2e20845985a",
"author": "George Gkotsis et al. (2016)"
}
}
},
"tutorials": {
"title": "Tutorials",
"next": "showcase",
"first_steps": {
"Setting up an NLP environment with Python": {
"url": "https://shirishkadam.com/2016/10/06/setting-up-natural-language-processing-environment-with-python/",
"author": "Shirish Kadam"
},
"NLP with spaCy in 10 lines of code": {
"url": "https://github.com/cytora/pycon-nlp-in-10-lines",
"author": "Andraz Hribernik et al. (Cytora)",
"tags": [ "jupyter" ]
},
"Intro to NLP with spaCy": {
"url": "https://nicschrading.com/project/Intro-to-NLP-with-spaCy/",
"author": "J Nicolas Schrading"
},
"NLP with spaCy and IPython Notebook": {
"url": "http://blog.sharepointexperience.com/2016/01/nlp-and-sharepoint-part-1/",
"author": "Dustin Miller (SharePoint)",
"tags": [ "jupyter" ]
},
"Getting Started with spaCy": {
"url": "http://textminingonline.com/getting-started-with-spacy",
"author": "TextMiner"
},
"spaCy A fast natural language processing library": {
"url": "https://bjoernkw.com/2015/11/22/spacy-a-fast-natural-language-processing-library/",
"author": "Björn Wilmsmann"
},
"NLP (almost) From Scratch - POS Network with spaCy": {
"url": "http://sujitpal.blogspot.de/2016/07/nlp-almost-from-scratch-implementing.html",
"author": "Sujit Pal",
"tags": [ "gensim", "keras" ]
},
"NLP tasks with various libraries": {
"url": "http://clarkgrubb.com/nlp",
"author": "Clark Grubb"
},
"A very (very) short primer on spacy.io": {
"url": "http://blog.milonimrod.com/2015/10/a-very-very-short-primer-on-spacyio.html",
"author": "Nimrod Milo "
}
},
"deep_dives": {
"Deep Learning with custom pipelines and Keras": {
"url": "https://explosion.ai/blog/spacy-deep-learning-keras",
"author": "Matthew Honnibal",
"tags": [ "keras", "sentiment" ]
},
"A decomposable attention model for Natural Language Inference": {
"url": "https://github.com/explosion/spaCy/tree/master/examples/keras_parikh_entailment",
"author": "Matthew Honnibal",
"tags": [ "keras", "similarity" ]
},
"Using the German model": {
"url": "https://explosion.ai/blog/german-model",
"author": "Wolfgang Seeker",
"tags": [ "multi-lingual" ]
},
"Sense2vec with spaCy and Gensim": {
"url": "https://explosion.ai/blog/sense2vec-with-spacy",
"author": "Matthew Honnibal",
"tags": [ "big data", "gensim" ]
},
"Building your bot's brain with Node.js and spaCy": {
"url": "https://explosion.ai/blog/chatbot-node-js-spacy",
"author": "Wah Loon Keng",
"tags": [ "bots", "node.js" ]
},
"An intent classifier with spaCy": {
"url": "http://blog.themusio.com/2016/07/18/musios-intent-classifier-2/",
"author": "Musio",
"tags": [ "bots", "keras" ]
},
"Visual Question Answering with spaCy": {
"url": "http://iamaaditya.github.io/2016/04/visual_question_answering_demo_notebook",
"author": "Aaditya Prakash",
"tags": [ "vqa", "keras" ]
}
},
"code": {
"Information extraction": {
"url": "https://github.com/explosion/spaCy/blob/master/examples/information_extraction.py",
"author": "Matthew Honnibal",
"tags": [ "snippet" ]
},
"Neural bag of words": {
"url": "https://github.com/explosion/spaCy/blob/master/examples/nn_text_class.py",
"author": "Matthew Honnibal",
"tags": [ "sentiment" ]
},
"Part-of-speech tagging": {
"url": "https://github.com/explosion/spaCy/blob/master/examples/pos_tag.py",
"author": "Matthew Honnibal",
"tags": [ "pos" ]
},
"Parallel parse": {
"url": "https://github.com/explosion/spaCy/blob/master/examples/parallel_parse.py",
"author": "Matthew Honnibal",
"tags": [ "big data" ]
},
"Inventory count": {
"url": "https://github.com/explosion/spaCy/tree/master/examples/inventory_count",
"author": "Oleg Zd"
},
"Multi-word matches": {
"url": "https://github.com/explosion/spaCy/blob/master/examples/multi_word_matches.py",
"author": "Matthew Honnibal",
"tags": [ "matcher", "out of date" ]
}
}
}
}