spaCy/spacy/tests/doc/test_add_entities.py

60 lines
1.9 KiB
Python

from spacy.pipeline import EntityRecognizer
from spacy.tokens import Span
from spacy import registry
import pytest
from ..util import get_doc
from spacy.pipeline.ner import DEFAULT_NER_MODEL
def test_doc_add_entities_set_ents_iob(en_vocab):
text = ["This", "is", "a", "lion"]
doc = get_doc(en_vocab, text)
config = {
"learn_tokens": False,
"min_action_freq": 30,
"update_with_oracle_cut_size": 100,
}
cfg = {"model": DEFAULT_NER_MODEL}
model = registry.make_from_config(cfg, validate=True)["model"]
ner = EntityRecognizer(en_vocab, model, **config)
ner.begin_training(lambda: [])
ner(doc)
assert len(list(doc.ents)) == 0
assert [w.ent_iob_ for w in doc] == (["O"] * len(doc))
doc.ents = [(doc.vocab.strings["ANIMAL"], 3, 4)]
assert [w.ent_iob_ for w in doc] == ["O", "O", "O", "B"]
doc.ents = [(doc.vocab.strings["WORD"], 0, 2)]
assert [w.ent_iob_ for w in doc] == ["B", "I", "O", "O"]
def test_ents_reset(en_vocab):
text = ["This", "is", "a", "lion"]
doc = get_doc(en_vocab, text)
config = {
"learn_tokens": False,
"min_action_freq": 30,
"update_with_oracle_cut_size": 100,
}
cfg = {"model": DEFAULT_NER_MODEL}
model = registry.make_from_config(cfg, validate=True)["model"]
ner = EntityRecognizer(en_vocab, model, **config)
ner.begin_training(lambda: [])
ner(doc)
assert [t.ent_iob_ for t in doc] == (["O"] * len(doc))
doc.ents = list(doc.ents)
assert [t.ent_iob_ for t in doc] == (["O"] * len(doc))
def test_add_overlapping_entities(en_vocab):
text = ["Louisiana", "Office", "of", "Conservation"]
doc = get_doc(en_vocab, text)
entity = Span(doc, 0, 4, label=391)
doc.ents = [entity]
new_entity = Span(doc, 0, 1, label=392)
with pytest.raises(ValueError):
doc.ents = list(doc.ents) + [new_entity]