spaCy/spacy/vectors.pyx

213 lines
7.2 KiB
Cython

from __future__ import unicode_literals
from libc.stdint cimport int32_t, uint64_t
import numpy
from collections import OrderedDict
import msgpack
import msgpack_numpy
msgpack_numpy.patch()
cimport numpy as np
from thinc.neural.util import get_array_module
from thinc.neural._classes.model import Model
from .typedefs cimport attr_t
from .strings cimport StringStore
from . import util
from .compat import basestring_, path2str
cdef class Vectors:
'''Store, save and load word vectors.
Vectors data is kept in the vectors.data attribute, which should be an
instance of numpy.ndarray (for CPU vectors)
or cupy.ndarray (for GPU vectors).
vectors.key2row is a dictionary mapping word hashes to rows
in the vectors.data table. The array `vectors.keys` keeps
the keys in order, such that keys[vectors.key2row[key]] == key.
'''
cdef public object data
cdef readonly StringStore strings
cdef public object key2row
cdef public object keys
cdef public int i
def __init__(self, strings, data_or_width=0):
if isinstance(strings, StringStore):
self.strings = strings
else:
self.strings = StringStore()
for string in strings:
self.strings.add(string)
if isinstance(data_or_width, int):
self.data = data = numpy.zeros((len(strings), data_or_width),
dtype='f')
else:
data = data_or_width
self.i = 0
self.data = data
self.key2row = {}
self.keys = np.ndarray((self.data.shape[0],), dtype='uint64')
def __reduce__(self):
return (Vectors, (self.strings, self.data))
def __getitem__(self, key):
'''Get a vector by key. If key is a string, it is hashed
to an integer ID using the vectors.strings table.
If the integer key is not found in the table, a KeyError is raised.
'''
if isinstance(key, basestring):
key = self.strings[key]
i = self.key2row[key]
if i is None:
raise KeyError(key)
else:
return self.data[i]
def __setitem__(self, key, vector):
'''Set a vector for the given key. If key is a string, it is hashed
to an integer ID using the vectors.strings table.
'''
if isinstance(key, basestring):
key = self.strings.add(key)
i = self.key2row[key]
self.data[i] = vector
def __iter__(self):
'''Yield vectors from the table.'''
yield from self.data
def __len__(self):
'''Return the number of vectors that have been assigned.'''
return self.i
def __contains__(self, key):
'''Check whether a key has a vector entry in the table.'''
if isinstance(key, basestring_):
key = self.strings[key]
return key in self.key2row
def add(self, key, vector=None):
'''Add a key to the table, optionally setting a vector value as well.'''
if isinstance(key, basestring_):
key = self.strings.add(key)
if key not in self.key2row:
i = self.i
if i >= self.keys.shape[0]:
self.keys.resize((self.keys.shape[0]*2,))
self.data.resize((self.data.shape[0]*2, self.data.shape[1]))
self.key2row[key] = self.i
self.keys[self.i] = key
self.i += 1
else:
i = self.key2row[key]
if vector is not None:
self.data[i] = vector
return i
def items(self):
'''Iterate over (string key, vector) pairs, in order.'''
for i, key in enumerate(self.keys):
string = self.strings[key]
yield string, self.data[i]
@property
def shape(self):
return self.data.shape
def most_similar(self, key):
raise NotImplementedError
def from_glove(self, path):
'''Load GloVe vectors from a directory. Assumes binary format,
that the vocab is in a vocab.txt, and that vectors are named
vectors.{size}.[fd].bin, e.g. vectors.128.f.bin for 128d float32
vectors, vectors.300.d.bin for 300d float64 (double) vectors, etc.
By default GloVe outputs 64-bit vectors.'''
path = util.ensure_path(path)
for name in path.iterdir():
if name.parts[-1].startswith('vectors'):
_, dims, dtype, _2 = name.parts[-1].split('.')
self.width = int(dims)
break
else:
raise IOError("Expected file named e.g. vectors.128.f.bin")
bin_loc = path / 'vectors.{dims}.{dtype}.bin'.format(dims=dims,
dtype=dtype)
with bin_loc.open('rb') as file_:
self.data = numpy.fromfile(file_, dtype='float64')
self.data = numpy.ascontiguousarray(self.data, dtype='float32')
n = 0
with (path / 'vocab.txt').open('r') as file_:
for line in file_:
self.add(line.strip())
n += 1
if (self.data.size % self.width) == 0:
self.data
def to_disk(self, path, **exclude):
xp = get_array_module(self.data)
if xp is numpy:
save_array = lambda arr, file_: xp.save(file_, arr, allow_pickle=False)
else:
save_array = lambda arr, file_: xp.save(file_, arr)
serializers = OrderedDict((
('vectors', lambda p: save_array(self.data, p.open('wb'))),
('keys', lambda p: xp.save(p.open('wb'), self.keys))
))
return util.to_disk(path, serializers, exclude)
def from_disk(self, path, **exclude):
def load_keys(path):
if path.exists():
self.keys = numpy.load(path2str(path))
for i, key in enumerate(self.keys):
self.keys[i] = key
self.key2row[key] = i
def load_vectors(path):
xp = Model.ops.xp
if path.exists():
self.data = xp.load(path)
serializers = OrderedDict((
('keys', load_keys),
('vectors', load_vectors),
))
util.from_disk(path, serializers, exclude)
return self
def to_bytes(self, **exclude):
def serialize_weights():
if hasattr(self.data, 'to_bytes'):
return self.data.to_bytes()
else:
return msgpack.dumps(self.data)
serializers = OrderedDict((
('keys', lambda: msgpack.dumps(self.keys)),
('vectors', serialize_weights)
))
return util.to_bytes(serializers, exclude)
def from_bytes(self, data, **exclude):
def deserialize_weights(b):
if hasattr(self.data, 'from_bytes'):
self.data.from_bytes()
else:
self.data = msgpack.loads(b)
def load_keys(keys):
self.keys.resize((len(keys),))
for i, key in enumerate(keys):
self.keys[i] = key
self.key2row[key] = i
deserializers = OrderedDict((
('keys', lambda b: load_keys(msgpack.loads(b))),
('vectors', deserialize_weights)
))
util.from_bytes(data, deserializers, exclude)
return self