mirror of https://github.com/explosion/spaCy.git
290 lines
7.1 KiB
Plaintext
290 lines
7.1 KiB
Plaintext
//- 💫 DOCS > API > LEXEME
|
||
|
||
include ../../_includes/_mixins
|
||
|
||
p
|
||
| An entry in the vocabulary. A #[code Lexeme] has no string context – it's
|
||
| a word type, as opposed to a word token. It therefore has no
|
||
| part-of-speech tag, dependency parse, or lemma (if lemmatization depends
|
||
| on the part-of-speech tag).
|
||
|
||
+h(2, "init") Lexeme.__init__
|
||
+tag method
|
||
|
||
p Create a #[code Lexeme] object.
|
||
|
||
+table(["Name", "Type", "Description"])
|
||
+row
|
||
+cell #[code vocab]
|
||
+cell #[code Vocab]
|
||
+cell The parent vocabulary.
|
||
|
||
+row
|
||
+cell #[code orth]
|
||
+cell int
|
||
+cell The orth id of the lexeme.
|
||
|
||
+footrow
|
||
+cell returns
|
||
+cell #[code Lexeme]
|
||
+cell The newly constructed object.
|
||
|
||
+h(2, "set_flag") Lexeme.set_flag
|
||
+tag method
|
||
|
||
p Change the value of a boolean flag.
|
||
|
||
+aside-code("Example").
|
||
COOL_FLAG = nlp.vocab.add_flag(lambda text: False)
|
||
nlp.vocab[u'spaCy'].set_flag(COOL_FLAG, True)
|
||
|
||
+table(["Name", "Type", "Description"])
|
||
+row
|
||
+cell #[code flag_id]
|
||
+cell int
|
||
+cell The attribute ID of the flag to set.
|
||
|
||
+row
|
||
+cell #[code value]
|
||
+cell bool
|
||
+cell The new value of the flag.
|
||
|
||
+h(2, "check_flag") Lexeme.check_flag
|
||
+tag method
|
||
|
||
p Check the value of a boolean flag.
|
||
|
||
+aside-code("Example").
|
||
is_my_library = lambda text: text in ['spaCy', 'Thinc']
|
||
MY_LIBRARY = nlp.vocab.add_flag(is_my_library)
|
||
assert nlp.vocab[u'spaCy'].check_flag(MY_LIBRARY) == True
|
||
|
||
+table(["Name", "Type", "Description"])
|
||
+row
|
||
+cell #[code flag_id]
|
||
+cell int
|
||
+cell The attribute ID of the flag to query.
|
||
|
||
+footrow
|
||
+cell returns
|
||
+cell bool
|
||
+cell The value of the flag.
|
||
|
||
+h(2, "similarity") Lexeme.similarity
|
||
+tag method
|
||
+tag-model("vectors")
|
||
|
||
p Compute a semantic similarity estimate. Defaults to cosine over vectors.
|
||
|
||
+aside-code("Example").
|
||
apple = nlp.vocab[u'apple']
|
||
orange = nlp.vocab[u'orange']
|
||
apple_orange = apple.similarity(orange)
|
||
orange_apple = orange.similarity(apple)
|
||
assert apple_orange == orange_apple
|
||
|
||
+table(["Name", "Type", "Description"])
|
||
+row
|
||
+cell other
|
||
+cell -
|
||
+cell
|
||
| The object to compare with. By default, accepts #[code Doc],
|
||
| #[code Span], #[code Token] and #[code Lexeme] objects.
|
||
|
||
+footrow
|
||
+cell returns
|
||
+cell float
|
||
+cell A scalar similarity score. Higher is more similar.
|
||
|
||
|
||
+h(2, "has_vector") Lexeme.has_vector
|
||
+tag property
|
||
+tag-model("vectors")
|
||
|
||
p
|
||
| A boolean value indicating whether a word vector is associated with the
|
||
| lexeme.
|
||
|
||
+aside-code("Example").
|
||
apple = nlp.vocab[u'apple']
|
||
assert apple.has_vector
|
||
|
||
+table(["Name", "Type", "Description"])
|
||
+footrow
|
||
+cell returns
|
||
+cell bool
|
||
+cell Whether the lexeme has a vector data attached.
|
||
|
||
+h(2, "vector") Lexeme.vector
|
||
+tag property
|
||
+tag-model("vectors")
|
||
|
||
p A real-valued meaning representation.
|
||
|
||
+aside-code("Example").
|
||
apple = nlp.vocab[u'apple']
|
||
assert apple.vector.dtype == 'float32'
|
||
assert apple.vector.shape == (300,)
|
||
|
||
+table(["Name", "Type", "Description"])
|
||
+footrow
|
||
+cell returns
|
||
+cell #[code numpy.ndarray[ndim=1, dtype='float32']]
|
||
+cell A 1D numpy array representing the lexeme's semantics.
|
||
|
||
+h(2, "vector_norm") Lexeme.vector_norm
|
||
+tag property
|
||
+tag-model("vectors")
|
||
|
||
p The L2 norm of the lexeme's vector representation.
|
||
|
||
+aside-code("Example").
|
||
apple = nlp.vocab[u'apple']
|
||
pasta = nlp.vocab[u'pasta']
|
||
apple.vector_norm # 7.1346845626831055
|
||
pasta.vector_norm # 7.759851932525635
|
||
assert apple.vector_norm != pasta.vector_norm
|
||
|
||
+table(["Name", "Type", "Description"])
|
||
+footrow
|
||
+cell returns
|
||
+cell float
|
||
+cell The L2 norm of the vector representation.
|
||
|
||
+h(2, "attributes") Attributes
|
||
|
||
+table(["Name", "Type", "Description"])
|
||
+row
|
||
+cell #[code vocab]
|
||
+cell #[code Vocab]
|
||
+cell
|
||
|
||
+row
|
||
+cell #[code text]
|
||
+cell unicode
|
||
+cell Verbatim text content.
|
||
|
||
+row
|
||
+cell #[code lex_id]
|
||
+cell int
|
||
+cell ID of the lexeme's lexical type.
|
||
|
||
+row
|
||
+cell #[code lower]
|
||
+cell int
|
||
+cell Lower-case form of the word.
|
||
|
||
+row
|
||
+cell #[code lower_]
|
||
+cell unicode
|
||
+cell Lower-case form of the word.
|
||
|
||
+row
|
||
+cell #[code shape]
|
||
+cell int
|
||
+cell Transform of the word's string, to show orthographic features.
|
||
|
||
+row
|
||
+cell #[code shape_]
|
||
+cell unicode
|
||
+cell Transform of the word's string, to show orthographic features.
|
||
|
||
+row
|
||
+cell #[code prefix]
|
||
+cell int
|
||
+cell Length-N substring from the start of the word. Defaults to #[code N=1].
|
||
|
||
+row
|
||
+cell #[code prefix_]
|
||
+cell unicode
|
||
+cell Length-N substring from the start of the word. Defaults to #[code N=1].
|
||
|
||
+row
|
||
+cell #[code suffix]
|
||
+cell int
|
||
+cell Length-N substring from the end of the word. Defaults to #[code N=3].
|
||
|
||
+row
|
||
+cell #[code suffix_]
|
||
+cell unicode
|
||
+cell Length-N substring from the start of the word. Defaults to #[code N=3].
|
||
|
||
+row
|
||
+cell #[code is_alpha]
|
||
+cell bool
|
||
+cell Equivalent to #[code word.orth_.isalpha()].
|
||
|
||
+row
|
||
+cell #[code is_ascii]
|
||
+cell bool
|
||
+cell Equivalent to #[code [any(ord(c) >= 128 for c in word.orth_)]].
|
||
|
||
+row
|
||
+cell #[code is_digit]
|
||
+cell bool
|
||
+cell Equivalent to #[code word.orth_.isdigit()].
|
||
|
||
+row
|
||
+cell #[code is_lower]
|
||
+cell bool
|
||
+cell Equivalent to #[code word.orth_.islower()].
|
||
|
||
+row
|
||
+cell #[code is_title]
|
||
+cell bool
|
||
+cell Equivalent to #[code word.orth_.istitle()].
|
||
|
||
+row
|
||
+cell #[code is_punct]
|
||
+cell bool
|
||
+cell Equivalent to #[code word.orth_.ispunct()].
|
||
|
||
+row
|
||
+cell #[code is_space]
|
||
+cell bool
|
||
+cell Equivalent to #[code word.orth_.isspace()].
|
||
|
||
+row
|
||
+cell #[code like_url]
|
||
+cell bool
|
||
+cell Does the word resemble a URL?
|
||
|
||
+row
|
||
+cell #[code like_num]
|
||
+cell bool
|
||
+cell Does the word represent a number? e.g. “10.9”, “10”, “ten”, etc.
|
||
|
||
+row
|
||
+cell #[code like_email]
|
||
+cell bool
|
||
+cell Does the word resemble an email address?
|
||
|
||
+row
|
||
+cell #[code is_oov]
|
||
+cell bool
|
||
+cell Is the word out-of-vocabulary?
|
||
|
||
+row
|
||
+cell #[code is_stop]
|
||
+cell bool
|
||
+cell Is the word part of a "stop list"?
|
||
|
||
+row
|
||
+cell #[code lang]
|
||
+cell int
|
||
+cell Language of the parent vocabulary.
|
||
+row
|
||
+cell #[code lang_]
|
||
+cell unicode
|
||
+cell Language of the parent vocabulary.
|
||
|
||
+row
|
||
+cell #[code prob]
|
||
+cell float
|
||
+cell Smoothed log probability estimate of lexeme's type.
|
||
|
||
+row
|
||
+cell #[code sentiment]
|
||
+cell float
|
||
+cell A scalar value indicating the positivity or negativity of the lexeme.
|