mirror of https://github.com/explosion/spaCy.git
65 lines
1.7 KiB
Cython
65 lines
1.7 KiB
Cython
# coding: utf-8
|
|
# cython: infer_types=True
|
|
from __future__ import unicode_literals
|
|
|
|
from libc.string cimport memcpy, memset
|
|
from libc.stdint cimport uint32_t, uint64_t
|
|
import numpy
|
|
|
|
from ..vocab cimport EMPTY_LEXEME
|
|
from ..structs cimport Entity
|
|
from ..lexeme cimport Lexeme
|
|
from ..symbols cimport punct
|
|
from ..attrs cimport IS_SPACE
|
|
from ..attrs cimport attr_id_t
|
|
from ..tokens.token cimport Token
|
|
from ..tokens.doc cimport Doc
|
|
|
|
|
|
cdef class StateClass:
|
|
def __init__(self, Doc doc=None, int offset=0):
|
|
cdef Pool mem = Pool()
|
|
self.mem = mem
|
|
if doc is not None:
|
|
self.c = new StateC(doc.c, doc.length)
|
|
self.c.offset = offset
|
|
|
|
def __dealloc__(self):
|
|
del self.c
|
|
|
|
@property
|
|
def stack(self):
|
|
return {self.S(i) for i in range(self.c._s_i)}
|
|
|
|
@property
|
|
def queue(self):
|
|
return {self.B(i) for i in range(self.c.buffer_length())}
|
|
|
|
@property
|
|
def token_vector_lenth(self):
|
|
return self.doc.tensor.shape[1]
|
|
|
|
@property
|
|
def history(self):
|
|
hist = numpy.ndarray((8,), dtype='i')
|
|
for i in range(8):
|
|
hist[i] = self.c.get_hist(i+1)
|
|
return hist
|
|
|
|
def is_final(self):
|
|
return self.c.is_final()
|
|
|
|
def copy(self):
|
|
cdef StateClass new_state = StateClass.init(self.c._sent, self.c.length)
|
|
new_state.c.clone(self.c)
|
|
return new_state
|
|
|
|
def print_state(self, words):
|
|
words = list(words) + ['_']
|
|
top = words[self.S(0)] + '_%d' % self.S_(0).head
|
|
second = words[self.S(1)] + '_%d' % self.S_(1).head
|
|
third = words[self.S(2)] + '_%d' % self.S_(2).head
|
|
n0 = words[self.B(0)]
|
|
n1 = words[self.B(1)]
|
|
return ' '.join((third, second, top, '|', n0, n1))
|