spaCy/spacy/tests/serialize/test_serialize_pipeline.py

209 lines
7.3 KiB
Python

import pytest
from spacy import registry
from spacy.pipeline import Tagger, DependencyParser, EntityRecognizer
from spacy.pipeline import TextCategorizer, SentenceRecognizer
from spacy.pipeline.dep_parser import DEFAULT_PARSER_MODEL
from spacy.pipeline.tagger import DEFAULT_TAGGER_MODEL
from spacy.pipeline.textcat import DEFAULT_TEXTCAT_MODEL
from spacy.pipeline.senter import DEFAULT_SENTER_MODEL
from spacy.lang.en import English
import spacy
from ..util import make_tempdir
test_parsers = [DependencyParser, EntityRecognizer]
@pytest.fixture
def parser(en_vocab):
config = {
"learn_tokens": False,
"min_action_freq": 30,
"update_with_oracle_cut_size": 100,
}
cfg = {"model": DEFAULT_PARSER_MODEL}
model = registry.make_from_config(cfg, validate=True)["model"]
parser = DependencyParser(en_vocab, model, **config)
parser.add_label("nsubj")
return parser
@pytest.fixture
def blank_parser(en_vocab):
config = {
"learn_tokens": False,
"min_action_freq": 30,
"update_with_oracle_cut_size": 100,
}
cfg = {"model": DEFAULT_PARSER_MODEL}
model = registry.make_from_config(cfg, validate=True)["model"]
parser = DependencyParser(en_vocab, model, **config)
return parser
@pytest.fixture
def taggers(en_vocab):
cfg = {"model": DEFAULT_TAGGER_MODEL}
model = registry.make_from_config(cfg, validate=True)["model"]
tagger1 = Tagger(en_vocab, model)
tagger2 = Tagger(en_vocab, model)
return tagger1, tagger2
@pytest.mark.parametrize("Parser", test_parsers)
def test_serialize_parser_roundtrip_bytes(en_vocab, Parser):
config = {
"learn_tokens": False,
"min_action_freq": 0,
"update_with_oracle_cut_size": 100,
}
cfg = {"model": DEFAULT_PARSER_MODEL}
model = registry.make_from_config(cfg, validate=True)["model"]
parser = Parser(en_vocab, model, **config)
new_parser = Parser(en_vocab, model, **config)
new_parser = new_parser.from_bytes(parser.to_bytes(exclude=["vocab"]))
bytes_2 = new_parser.to_bytes(exclude=["vocab"])
bytes_3 = parser.to_bytes(exclude=["vocab"])
assert len(bytes_2) == len(bytes_3)
assert bytes_2 == bytes_3
@pytest.mark.parametrize("Parser", test_parsers)
def test_serialize_parser_roundtrip_disk(en_vocab, Parser):
config = {
"learn_tokens": False,
"min_action_freq": 0,
"update_with_oracle_cut_size": 100,
}
cfg = {"model": DEFAULT_PARSER_MODEL}
model = registry.make_from_config(cfg, validate=True)["model"]
parser = Parser(en_vocab, model, **config)
with make_tempdir() as d:
file_path = d / "parser"
parser.to_disk(file_path)
parser_d = Parser(en_vocab, model, **config)
parser_d = parser_d.from_disk(file_path)
parser_bytes = parser.to_bytes(exclude=["model", "vocab"])
parser_d_bytes = parser_d.to_bytes(exclude=["model", "vocab"])
assert len(parser_bytes) == len(parser_d_bytes)
assert parser_bytes == parser_d_bytes
def test_to_from_bytes(parser, blank_parser):
assert parser.model is not True
assert blank_parser.model is not True
assert blank_parser.moves.n_moves != parser.moves.n_moves
bytes_data = parser.to_bytes(exclude=["vocab"])
# the blank parser needs to be resized before we can call from_bytes
blank_parser.model.attrs["resize_output"](blank_parser.model, parser.moves.n_moves)
blank_parser.from_bytes(bytes_data)
assert blank_parser.model is not True
assert blank_parser.moves.n_moves == parser.moves.n_moves
@pytest.mark.skip(
reason="This seems to be a dict ordering bug somewhere. Only failing on some platforms."
)
def test_serialize_tagger_roundtrip_bytes(en_vocab, taggers):
tagger1 = taggers[0]
tagger1_b = tagger1.to_bytes()
tagger1 = tagger1.from_bytes(tagger1_b)
assert tagger1.to_bytes() == tagger1_b
cfg = {"model": DEFAULT_TAGGER_MODEL}
model = registry.make_from_config(cfg, validate=True)["model"]
new_tagger1 = Tagger(en_vocab, model).from_bytes(tagger1_b)
new_tagger1_b = new_tagger1.to_bytes()
assert len(new_tagger1_b) == len(tagger1_b)
assert new_tagger1_b == tagger1_b
def test_serialize_tagger_roundtrip_disk(en_vocab, taggers):
tagger1, tagger2 = taggers
with make_tempdir() as d:
file_path1 = d / "tagger1"
file_path2 = d / "tagger2"
tagger1.to_disk(file_path1)
tagger2.to_disk(file_path2)
cfg = {"model": DEFAULT_TAGGER_MODEL}
model = registry.make_from_config(cfg, validate=True)["model"]
tagger1_d = Tagger(en_vocab, model).from_disk(file_path1)
tagger2_d = Tagger(en_vocab, model).from_disk(file_path2)
assert tagger1_d.to_bytes() == tagger2_d.to_bytes()
def test_serialize_textcat_empty(en_vocab):
# See issue #1105
cfg = {"model": DEFAULT_TEXTCAT_MODEL}
model = registry.make_from_config(cfg, validate=True)["model"]
textcat = TextCategorizer(en_vocab, model, labels=["ENTITY", "ACTION", "MODIFIER"], threshold=0.5, positive_label=None)
textcat.to_bytes(exclude=["vocab"])
@pytest.mark.parametrize("Parser", test_parsers)
def test_serialize_pipe_exclude(en_vocab, Parser):
cfg = {"model": DEFAULT_PARSER_MODEL}
model = registry.make_from_config(cfg, validate=True)["model"]
config = {
"learn_tokens": False,
"min_action_freq": 0,
"update_with_oracle_cut_size": 100,
}
def get_new_parser():
new_parser = Parser(en_vocab, model, **config)
return new_parser
parser = Parser(en_vocab, model, **config)
parser.cfg["foo"] = "bar"
new_parser = get_new_parser().from_bytes(parser.to_bytes(exclude=["vocab"]))
assert "foo" in new_parser.cfg
new_parser = get_new_parser().from_bytes(
parser.to_bytes(exclude=["vocab"]), exclude=["cfg"]
)
assert "foo" not in new_parser.cfg
new_parser = get_new_parser().from_bytes(
parser.to_bytes(exclude=["cfg"]), exclude=["vocab"]
)
assert "foo" not in new_parser.cfg
def test_serialize_sentencerecognizer(en_vocab):
cfg = {"model": DEFAULT_SENTER_MODEL}
model = registry.make_from_config(cfg, validate=True)["model"]
sr = SentenceRecognizer(en_vocab, model)
sr_b = sr.to_bytes()
sr_d = SentenceRecognizer(en_vocab, model).from_bytes(sr_b)
assert sr.to_bytes() == sr_d.to_bytes()
def test_serialize_pipeline_disable_enable():
nlp = English()
nlp.add_pipe("ner")
nlp.add_pipe("tagger")
nlp.disable_pipe("tagger")
assert nlp.config["nlp"]["disabled"] == ["tagger"]
config = nlp.config.copy()
nlp2 = English.from_config(config)
assert nlp2.pipe_names == ["ner"]
assert nlp2.component_names == ["ner", "tagger"]
assert nlp2.disabled == ["tagger"]
assert nlp2.config["nlp"]["disabled"] == ["tagger"]
with make_tempdir() as d:
nlp2.to_disk(d)
nlp3 = spacy.load(d)
assert nlp3.pipe_names == ["ner"]
assert nlp3.component_names == ["ner", "tagger"]
with make_tempdir() as d:
nlp3.to_disk(d)
nlp4 = spacy.load(d, disable=["ner"])
assert nlp4.pipe_names == []
assert nlp4.component_names == ["ner", "tagger"]
assert nlp4.disabled == ["ner", "tagger"]
with make_tempdir() as d:
nlp.to_disk(d)
nlp5 = spacy.load(d, exclude=["tagger"])
assert nlp5.pipe_names == ["ner"]
assert nlp5.component_names == ["ner"]
assert nlp5.disabled == []