spaCy/spacy/tests/lang/en/test_lemmatizer.py

64 lines
2.1 KiB
Python

# coding: utf-8
from __future__ import unicode_literals
import pytest
from ....tokens.doc import Doc
@pytest.fixture
def en_lemmatizer(EN):
return EN.Defaults.create_lemmatizer()
@pytest.mark.models('en')
def test_doc_lemmatization(EN):
doc = Doc(EN.vocab, words=['bleed'])
doc[0].tag_ = 'VBP'
assert doc[0].lemma_ == 'bleed'
@pytest.mark.models('en')
@pytest.mark.parametrize('text,lemmas', [("aardwolves", ["aardwolf"]),
("aardwolf", ["aardwolf"]),
("planets", ["planet"]),
("ring", ["ring"]),
("axes", ["axis", "axe", "ax"])])
def test_en_lemmatizer_noun_lemmas(en_lemmatizer, text, lemmas):
assert en_lemmatizer.noun(text) == lemmas
@pytest.mark.models('en')
@pytest.mark.parametrize('text,lemmas', [("bleed", ["bleed"]),
("feed", ["feed"]),
("need", ["need"]),
("ring", ["ring"])])
def test_en_lemmatizer_noun_lemmas(en_lemmatizer, text, lemmas):
# Cases like this are problematic -- not clear what we should do to resolve
# ambiguity?
# ("axes", ["ax", "axes", "axis"])])
assert en_lemmatizer.noun(text) == lemmas
@pytest.mark.xfail
@pytest.mark.models('en')
def test_en_lemmatizer_base_forms(en_lemmatizer):
assert en_lemmatizer.noun('dive', {'number': 'sing'}) == ['dive']
assert en_lemmatizer.noun('dive', {'number': 'plur'}) == ['diva']
@pytest.mark.models('en')
def test_en_lemmatizer_base_form_verb(en_lemmatizer):
assert en_lemmatizer.verb('saw', {'verbform': 'past'}) == ['see']
@pytest.mark.models('en')
def test_en_lemmatizer_punct(en_lemmatizer):
assert en_lemmatizer.punct('') == ['"']
assert en_lemmatizer.punct('') == ['"']
@pytest.mark.models('en')
def test_en_lemmatizer_lemma_assignment(EN):
text = "Bananas in pyjamas are geese."
doc = EN.make_doc(text)
EN.tagger(doc)
assert all(t.lemma_ != '' for t in doc)