spaCy/spacy/tests/test_language.py

143 lines
3.7 KiB
Python

import itertools
import pytest
from spacy.gold import GoldParse
from spacy.language import Language
from spacy.tokens import Doc, Span
from spacy.vocab import Vocab
from .util import add_vecs_to_vocab, assert_docs_equal
@pytest.fixture
def nlp():
nlp = Language(Vocab())
textcat = nlp.create_pipe("textcat")
for label in ("POSITIVE", "NEGATIVE"):
textcat.add_label(label)
nlp.add_pipe(textcat)
nlp.begin_training()
return nlp
def test_language_update(nlp):
text = "hello world"
annots = {"cats": {"POSITIVE": 1.0, "NEGATIVE": 0.0}}
wrongkeyannots = {"LABEL": True}
doc = Doc(nlp.vocab, words=text.split(" "))
gold = GoldParse(doc, **annots)
# Update with doc and gold objects
nlp.update((doc, gold))
# Update with text and dict
nlp.update((text, annots))
# Update with doc object and dict
nlp.update((doc, annots))
# Update with text and gold object
nlp.update((text, gold))
# Update with empty doc and gold object
nlp.update((None, gold))
# Update badly
with pytest.raises(ValueError):
nlp.update((doc, None))
with pytest.raises(TypeError):
nlp.update((text, wrongkeyannots))
def test_language_evaluate(nlp):
text = "hello world"
annots = {"cats": {"POSITIVE": 1.0, "NEGATIVE": 0.0}}
doc = Doc(nlp.vocab, words=text.split(" "))
gold = GoldParse(doc, **annots)
# Evaluate with doc and gold objects
nlp.evaluate([(doc, gold)])
# Evaluate with text and dict
nlp.evaluate([(text, annots)])
# Evaluate with doc object and dict
nlp.evaluate([(doc, annots)])
# Evaluate with text and gold object
nlp.evaluate([(text, gold)])
# Evaluate badly
with pytest.raises(Exception):
nlp.evaluate([text, gold])
def test_evaluate_no_pipe(nlp):
"""Test that docs are processed correctly within Language.pipe if the
component doesn't expose a .pipe method."""
def pipe(doc):
return doc
text = "hello world"
annots = {"cats": {"POSITIVE": 1.0, "NEGATIVE": 0.0}}
nlp = Language(Vocab())
nlp.add_pipe(pipe)
nlp.evaluate([(text, annots)])
def vector_modification_pipe(doc):
doc.vector += 1
return doc
def userdata_pipe(doc):
doc.user_data["foo"] = "bar"
return doc
def ner_pipe(doc):
span = Span(doc, 0, 1, label="FIRST")
doc.ents += (span,)
return doc
@pytest.fixture
def sample_vectors():
return [
("spacy", [-0.1, -0.2, -0.3]),
("world", [-0.2, -0.3, -0.4]),
("pipe", [0.7, 0.8, 0.9]),
]
@pytest.fixture
def nlp2(nlp, sample_vectors):
add_vecs_to_vocab(nlp.vocab, sample_vectors)
nlp.add_pipe(vector_modification_pipe)
nlp.add_pipe(ner_pipe)
nlp.add_pipe(userdata_pipe)
return nlp
@pytest.fixture
def texts():
data = [
"Hello world.",
"This is spacy.",
"You can use multiprocessing with pipe method.",
"Please try!",
]
return data
@pytest.mark.parametrize("n_process", [1, 2])
def test_language_pipe(nlp2, n_process, texts):
texts = texts * 10
expecteds = [nlp2(text) for text in texts]
docs = nlp2.pipe(texts, n_process=n_process, batch_size=2)
for doc, expected_doc in zip(docs, expecteds):
assert_docs_equal(doc, expected_doc)
@pytest.mark.parametrize("n_process", [1, 2])
def test_language_pipe_stream(nlp2, n_process, texts):
# check if nlp.pipe can handle infinite length iterator properly.
stream_texts = itertools.cycle(texts)
texts0, texts1 = itertools.tee(stream_texts)
expecteds = (nlp2(text) for text in texts0)
docs = nlp2.pipe(texts1, n_process=n_process, batch_size=2)
n_fetch = 20
for doc, expected_doc in itertools.islice(zip(docs, expecteds), n_fetch):
assert_docs_equal(doc, expected_doc)