mirror of https://github.com/explosion/spaCy.git
262 lines
8.0 KiB
Python
Executable File
262 lines
8.0 KiB
Python
Executable File
#!/usr/bin/env python
|
|
from __future__ import division
|
|
from __future__ import unicode_literals
|
|
|
|
import os
|
|
from os import path
|
|
import shutil
|
|
import codecs
|
|
import random
|
|
|
|
import plac
|
|
import cProfile
|
|
import pstats
|
|
import re
|
|
|
|
import spacy.util
|
|
from spacy.en import English
|
|
from spacy.en.pos import POS_TEMPLATES, POS_TAGS, setup_model_dir
|
|
|
|
from spacy.syntax.util import Config
|
|
from spacy.gold import read_json_file
|
|
from spacy.gold import GoldParse
|
|
|
|
from spacy.scorer import Scorer
|
|
|
|
from spacy.syntax.parser import Parser, get_templates
|
|
from spacy._theano import TheanoModel
|
|
|
|
import theano
|
|
import theano.tensor as T
|
|
|
|
from theano.printing import Print
|
|
|
|
import numpy
|
|
from collections import OrderedDict, defaultdict
|
|
|
|
|
|
theano.config.profile = False
|
|
theano.config.floatX = 'float32'
|
|
floatX = theano.config.floatX
|
|
|
|
|
|
def L1(L1_reg, *weights):
|
|
return L1_reg * sum(abs(w).sum() for w in weights)
|
|
|
|
|
|
def L2(L2_reg, *weights):
|
|
return L2_reg * sum((w ** 2).sum() for w in weights)
|
|
|
|
|
|
def rms_prop(loss, params, eta=1.0, rho=0.9, eps=1e-6):
|
|
updates = OrderedDict()
|
|
for param in params:
|
|
value = param.get_value(borrow=True)
|
|
accu = theano.shared(np.zeros(value.shape, dtype=value.dtype),
|
|
broadcastable=param.broadcastable)
|
|
|
|
grad = T.grad(loss, param)
|
|
accu_new = rho * accu + (1 - rho) * grad ** 2
|
|
updates[accu] = accu_new
|
|
updates[param] = param - (eta * grad / T.sqrt(accu_new + eps))
|
|
return updates
|
|
|
|
|
|
def relu(x):
|
|
return x * (x > 0)
|
|
|
|
|
|
def feed_layer(activation, weights, bias, input_):
|
|
return activation(T.dot(input_, weights) + bias)
|
|
|
|
|
|
def init_weights(n_in, n_out):
|
|
rng = numpy.random.RandomState(1235)
|
|
|
|
weights = numpy.asarray(
|
|
rng.standard_normal(size=(n_in, n_out)) * numpy.sqrt(2.0 / n_in),
|
|
dtype=theano.config.floatX
|
|
)
|
|
bias = numpy.zeros((n_out,), dtype=theano.config.floatX)
|
|
return [wrapper(weights, name='W'), wrapper(bias, name='b')]
|
|
|
|
|
|
def compile_model(n_classes, n_hidden, n_in, optimizer):
|
|
x = T.vector('x')
|
|
costs = T.ivector('costs')
|
|
loss = T.scalar('loss')
|
|
|
|
maxent_W, maxent_b = init_weights(n_hidden, n_classes)
|
|
hidden_W, hidden_b = init_weights(n_in, n_hidden)
|
|
|
|
# Feed the inputs forward through the network
|
|
p_y_given_x = feed_layer(
|
|
T.nnet.softmax,
|
|
maxent_W,
|
|
maxent_b,
|
|
feed_layer(
|
|
relu,
|
|
hidden_W,
|
|
hidden_b,
|
|
x))
|
|
|
|
loss = -T.log(T.sum(p_y_given_x[0] * T.eq(costs, 0)) + 1e-8)
|
|
|
|
train_model = theano.function(
|
|
name='train_model',
|
|
inputs=[x, costs],
|
|
outputs=[p_y_given_x[0], T.grad(loss, x), loss],
|
|
updates=optimizer(loss, [maxent_W, maxent_b, hidden_W, hidden_b]),
|
|
on_unused_input='warn'
|
|
)
|
|
|
|
evaluate_model = theano.function(
|
|
name='evaluate_model',
|
|
inputs=[x],
|
|
outputs=[
|
|
feed_layer(
|
|
T.nnet.softmax,
|
|
maxent_W,
|
|
maxent_b,
|
|
feed_layer(
|
|
relu,
|
|
hidden_W,
|
|
hidden_b,
|
|
x
|
|
)
|
|
)[0]
|
|
]
|
|
)
|
|
return train_model, evaluate_model
|
|
|
|
|
|
def score_model(scorer, nlp, annot_tuples, verbose=False):
|
|
tokens = nlp.tokenizer.tokens_from_list(annot_tuples[1])
|
|
nlp.tagger(tokens)
|
|
nlp.parser(tokens)
|
|
gold = GoldParse(tokens, annot_tuples)
|
|
scorer.score(tokens, gold, verbose=verbose)
|
|
|
|
|
|
def train(Language, gold_tuples, model_dir, n_iter=15, feat_set=u'basic',
|
|
eta=0.01, mu=0.9, nv_hidden=100, nv_word=10, nv_tag=10, nv_label=10,
|
|
seed=0, n_sents=0, verbose=False):
|
|
|
|
dep_model_dir = path.join(model_dir, 'deps')
|
|
pos_model_dir = path.join(model_dir, 'pos')
|
|
if path.exists(dep_model_dir):
|
|
shutil.rmtree(dep_model_dir)
|
|
if path.exists(pos_model_dir):
|
|
shutil.rmtree(pos_model_dir)
|
|
os.mkdir(dep_model_dir)
|
|
os.mkdir(pos_model_dir)
|
|
setup_model_dir(sorted(POS_TAGS.keys()), POS_TAGS, POS_TEMPLATES, pos_model_dir)
|
|
|
|
Config.write(dep_model_dir, 'config',
|
|
seed=seed,
|
|
templates=tuple(),
|
|
labels=Language.ParserTransitionSystem.get_labels(gold_tuples),
|
|
vector_lengths=(nv_word, nv_tag, nv_label),
|
|
hidden_nodes=nv_hidden,
|
|
eta=eta,
|
|
mu=mu
|
|
)
|
|
|
|
# Bake-in hyper-parameters
|
|
optimizer = lambda loss, params: rms_prop(loss, params, eta=eta, rho=rho, eps=eps)
|
|
nlp = Language(data_dir=model_dir)
|
|
n_classes = nlp.parser.model.n_classes
|
|
train, predict = compile_model(n_classes, nv_hidden, n_in, optimizer)
|
|
nlp.parser.model = TheanoModel(n_classes, input_spec, train,
|
|
predict, model_loc)
|
|
|
|
if n_sents > 0:
|
|
gold_tuples = gold_tuples[:n_sents]
|
|
print "Itn.\tP.Loss\tUAS\tTag %\tToken %"
|
|
log_loc = path.join(model_dir, 'job.log')
|
|
for itn in range(n_iter):
|
|
scorer = Scorer()
|
|
loss = 0
|
|
for _, sents in gold_tuples:
|
|
for annot_tuples, ctnt in sents:
|
|
if len(annot_tuples[1]) == 1:
|
|
continue
|
|
score_model(scorer, nlp, annot_tuples)
|
|
tokens = nlp.tokenizer.tokens_from_list(annot_tuples[1])
|
|
nlp.tagger(tokens)
|
|
gold = GoldParse(tokens, annot_tuples, make_projective=True)
|
|
assert gold.is_projective
|
|
loss += nlp.parser.train(tokens, gold)
|
|
nlp.tagger.train(tokens, gold.tags)
|
|
random.shuffle(gold_tuples)
|
|
logline = '%d:\t%d\t%.3f\t%.3f\t%.3f' % (itn, loss, scorer.uas,
|
|
scorer.tags_acc,
|
|
scorer.token_acc)
|
|
print logline
|
|
with open(log_loc, 'aw') as file_:
|
|
file_.write(logline + '\n')
|
|
nlp.parser.model.end_training()
|
|
nlp.tagger.model.end_training()
|
|
nlp.vocab.strings.dump(path.join(model_dir, 'vocab', 'strings.txt'))
|
|
return nlp
|
|
|
|
|
|
def evaluate(nlp, gold_tuples, gold_preproc=True):
|
|
scorer = Scorer()
|
|
for raw_text, sents in gold_tuples:
|
|
for annot_tuples, brackets in sents:
|
|
tokens = nlp.tokenizer.tokens_from_list(annot_tuples[1])
|
|
nlp.tagger(tokens)
|
|
nlp.parser(tokens)
|
|
gold = GoldParse(tokens, annot_tuples)
|
|
scorer.score(tokens, gold)
|
|
return scorer
|
|
|
|
|
|
@plac.annotations(
|
|
train_loc=("Location of training file or directory"),
|
|
dev_loc=("Location of development file or directory"),
|
|
model_dir=("Location of output model directory",),
|
|
eval_only=("Skip training, and only evaluate", "flag", "e", bool),
|
|
n_sents=("Number of training sentences", "option", "n", int),
|
|
n_iter=("Number of training iterations", "option", "i", int),
|
|
verbose=("Verbose error reporting", "flag", "v", bool),
|
|
|
|
nv_word=("Word vector length", "option", "W", int),
|
|
nv_tag=("Tag vector length", "option", "T", int),
|
|
nv_label=("Label vector length", "option", "L", int),
|
|
nv_hidden=("Hidden nodes length", "option", "H", int),
|
|
eta=("Learning rate", "option", "E", float),
|
|
mu=("Momentum", "option", "M", float),
|
|
)
|
|
def main(train_loc, dev_loc, model_dir, n_sents=0, n_iter=15, verbose=False,
|
|
nv_word=10, nv_tag=10, nv_label=10, nv_hidden=10,
|
|
eta=0.1, mu=0.9, eval_only=False):
|
|
|
|
|
|
|
|
|
|
gold_train = list(read_json_file(train_loc, lambda doc: 'wsj' in doc['id']))
|
|
|
|
nlp = train(English, gold_train, model_dir,
|
|
feat_set='embed',
|
|
eta=eta, mu=mu,
|
|
nv_word=nv_word, nv_tag=nv_tag, nv_label=nv_label, nv_hidden=nv_hidden,
|
|
n_sents=n_sents, n_iter=n_iter,
|
|
verbose=verbose)
|
|
|
|
scorer = evaluate(nlp, list(read_json_file(dev_loc)))
|
|
|
|
print 'TOK', 100-scorer.token_acc
|
|
print 'POS', scorer.tags_acc
|
|
print 'UAS', scorer.uas
|
|
print 'LAS', scorer.las
|
|
|
|
print 'NER P', scorer.ents_p
|
|
print 'NER R', scorer.ents_r
|
|
print 'NER F', scorer.ents_f
|
|
|
|
|
|
if __name__ == '__main__':
|
|
plac.call(main)
|