spaCy/examples/deep_learning_keras.py

268 lines
8.4 KiB
Python

"""
This example shows how to use an LSTM sentiment classification model trained
using Keras in spaCy. spaCy splits the document into sentences, and each
sentence is classified using the LSTM. The scores for the sentences are then
aggregated to give the document score. This kind of hierarchical model is quite
difficult in "pure" Keras or Tensorflow, but it's very effective. The Keras
example on this dataset performs quite poorly, because it cuts off the documents
so that they're a fixed size. This hurts review accuracy a lot, because people
often summarise their rating in the final sentence
Prerequisites:
spacy download en_vectors_web_lg
pip install keras==2.0.9
Compatible with: spaCy v2.0.0+
"""
import plac
import random
import pathlib
import cytoolz
import numpy
from keras.models import Sequential, model_from_json
from keras.layers import LSTM, Dense, Embedding, Bidirectional
from keras.layers import TimeDistributed
from keras.optimizers import Adam
import thinc.extra.datasets
from spacy.compat import pickle
import spacy
class SentimentAnalyser(object):
@classmethod
def load(cls, path, nlp, max_length=100):
with (path / "config.json").open() as file_:
model = model_from_json(file_.read())
with (path / "model").open("rb") as file_:
lstm_weights = pickle.load(file_)
embeddings = get_embeddings(nlp.vocab)
model.set_weights([embeddings] + lstm_weights)
return cls(model, max_length=max_length)
def __init__(self, model, max_length=100):
self._model = model
self.max_length = max_length
def __call__(self, doc):
X = get_features([doc], self.max_length)
y = self._model.predict(X)
self.set_sentiment(doc, y)
def pipe(self, docs, batch_size=1000, n_threads=2):
for minibatch in cytoolz.partition_all(batch_size, docs):
minibatch = list(minibatch)
sentences = []
for doc in minibatch:
sentences.extend(doc.sents)
Xs = get_features(sentences, self.max_length)
ys = self._model.predict(Xs)
for sent, label in zip(sentences, ys):
sent.doc.sentiment += label - 0.5
for doc in minibatch:
yield doc
def set_sentiment(self, doc, y):
doc.sentiment = float(y[0])
# Sentiment has a native slot for a single float.
# For arbitrary data storage, there's:
# doc.user_data['my_data'] = y
def get_labelled_sentences(docs, doc_labels):
labels = []
sentences = []
for doc, y in zip(docs, doc_labels):
for sent in doc.sents:
sentences.append(sent)
labels.append(y)
return sentences, numpy.asarray(labels, dtype="int32")
def get_features(docs, max_length):
docs = list(docs)
Xs = numpy.zeros((len(docs), max_length), dtype="int32")
for i, doc in enumerate(docs):
j = 0
for token in doc:
vector_id = token.vocab.vectors.find(key=token.orth)
if vector_id >= 0:
Xs[i, j] = vector_id
else:
Xs[i, j] = 0
j += 1
if j >= max_length:
break
return Xs
def train(
train_texts,
train_labels,
dev_texts,
dev_labels,
lstm_shape,
lstm_settings,
lstm_optimizer,
batch_size=100,
nb_epoch=5,
by_sentence=True,
):
print("Loading spaCy")
nlp = spacy.load("en_vectors_web_lg")
nlp.add_pipe(nlp.create_pipe("sentencizer"))
embeddings = get_embeddings(nlp.vocab)
model = compile_lstm(embeddings, lstm_shape, lstm_settings)
print("Parsing texts...")
train_docs = list(nlp.pipe(train_texts))
dev_docs = list(nlp.pipe(dev_texts))
if by_sentence:
train_docs, train_labels = get_labelled_sentences(train_docs, train_labels)
dev_docs, dev_labels = get_labelled_sentences(dev_docs, dev_labels)
train_X = get_features(train_docs, lstm_shape["max_length"])
dev_X = get_features(dev_docs, lstm_shape["max_length"])
model.fit(
train_X,
train_labels,
validation_data=(dev_X, dev_labels),
epochs=nb_epoch,
batch_size=batch_size,
)
return model
def compile_lstm(embeddings, shape, settings):
model = Sequential()
model.add(
Embedding(
embeddings.shape[0],
embeddings.shape[1],
input_length=shape["max_length"],
trainable=False,
weights=[embeddings],
mask_zero=True,
)
)
model.add(TimeDistributed(Dense(shape["nr_hidden"], use_bias=False)))
model.add(
Bidirectional(
LSTM(
shape["nr_hidden"],
recurrent_dropout=settings["dropout"],
dropout=settings["dropout"],
)
)
)
model.add(Dense(shape["nr_class"], activation="sigmoid"))
model.compile(
optimizer=Adam(lr=settings["lr"]),
loss="binary_crossentropy",
metrics=["accuracy"],
)
return model
def get_embeddings(vocab):
return vocab.vectors.data
def evaluate(model_dir, texts, labels, max_length=100):
nlp = spacy.load("en_vectors_web_lg")
nlp.add_pipe(nlp.create_pipe("sentencizer"))
nlp.add_pipe(SentimentAnalyser.load(model_dir, nlp, max_length=max_length))
correct = 0
i = 0
for doc in nlp.pipe(texts, batch_size=1000, n_threads=4):
correct += bool(doc.sentiment >= 0.5) == bool(labels[i])
i += 1
return float(correct) / i
def read_data(data_dir, limit=0):
examples = []
for subdir, label in (("pos", 1), ("neg", 0)):
for filename in (data_dir / subdir).iterdir():
with filename.open() as file_:
text = file_.read()
examples.append((text, label))
random.shuffle(examples)
if limit >= 1:
examples = examples[:limit]
return zip(*examples) # Unzips into two lists
@plac.annotations(
train_dir=("Location of training file or directory"),
dev_dir=("Location of development file or directory"),
model_dir=("Location of output model directory",),
is_runtime=("Demonstrate run-time usage", "flag", "r", bool),
nr_hidden=("Number of hidden units", "option", "H", int),
max_length=("Maximum sentence length", "option", "L", int),
dropout=("Dropout", "option", "d", float),
learn_rate=("Learn rate", "option", "e", float),
nb_epoch=("Number of training epochs", "option", "i", int),
batch_size=("Size of minibatches for training LSTM", "option", "b", int),
nr_examples=("Limit to N examples", "option", "n", int),
)
def main(
model_dir=None,
train_dir=None,
dev_dir=None,
is_runtime=False,
nr_hidden=64,
max_length=100, # Shape
dropout=0.5,
learn_rate=0.001, # General NN config
nb_epoch=5,
batch_size=256,
nr_examples=-1,
): # Training params
if model_dir is not None:
model_dir = pathlib.Path(model_dir)
if train_dir is None or dev_dir is None:
imdb_data = thinc.extra.datasets.imdb()
if is_runtime:
if dev_dir is None:
dev_texts, dev_labels = zip(*imdb_data[1])
else:
dev_texts, dev_labels = read_data(dev_dir)
acc = evaluate(model_dir, dev_texts, dev_labels, max_length=max_length)
print(acc)
else:
if train_dir is None:
train_texts, train_labels = zip(*imdb_data[0])
else:
print("Read data")
train_texts, train_labels = read_data(train_dir, limit=nr_examples)
if dev_dir is None:
dev_texts, dev_labels = zip(*imdb_data[1])
else:
dev_texts, dev_labels = read_data(dev_dir, imdb_data, limit=nr_examples)
train_labels = numpy.asarray(train_labels, dtype="int32")
dev_labels = numpy.asarray(dev_labels, dtype="int32")
lstm = train(
train_texts,
train_labels,
dev_texts,
dev_labels,
{"nr_hidden": nr_hidden, "max_length": max_length, "nr_class": 1},
{"dropout": dropout, "lr": learn_rate},
{},
nb_epoch=nb_epoch,
batch_size=batch_size,
)
weights = lstm.get_weights()
if model_dir is not None:
with (model_dir / "model").open("wb") as file_:
pickle.dump(weights[1:], file_)
with (model_dir / "config.json").open("w") as file_:
file_.write(lstm.to_json())
if __name__ == "__main__":
plac.call(main)