spaCy/spacy/util.py

160 lines
5.2 KiB
Python

import os
import io
import json
import re
import os.path
import sputnik
from sputnik.dir_package import DirPackage
from sputnik.package_stub import PackageStub
from sputnik.package_list import PackageNotFoundException, CompatiblePackageNotFoundException
from . import about
from .attrs import TAG, HEAD, DEP, ENT_IOB, ENT_TYPE
def get_package(value=None, data_path=None):
if data_path is None:
if isinstance(value, PackageStub):
return value
elif value and os.path.isdir(value):
return DirPackage(value)
elif value is None and data_path is not None:
return DirPackage(data_path)
try:
return sputnik.package('spacy', about.short_version,
value or 'en_default==1.0.4',
data_path=data_path)
except PackageNotFoundException as e:
raise RuntimeError("Model not installed. Please run 'python -m "
"spacy.en.download' to install latest compatible "
"model.")
except CompatiblePackageNotFoundException as e:
raise RuntimeError("Installed model is not compatible with spaCy "
"version. Please run 'python -m spacy.en.download' "
"--force' to install latest compatible model.")
def normalize_slice(length, start, stop, step=None):
if not (step is None or step == 1):
raise ValueError("Stepped slices not supported in Span objects."
"Try: list(tokens)[start:stop:step] instead.")
if start is None:
start = 0
elif start < 0:
start += length
start = min(length, max(0, start))
if stop is None:
stop = length
elif stop < 0:
stop += length
stop = min(length, max(start, stop))
assert 0 <= start <= stop <= length
return start, stop
def utf8open(loc, mode='r'):
return io.open(loc, mode, encoding='utf8')
def read_lang_data(package):
tokenization = package.load_json(('tokenizer', 'specials.json'))
with package.open(('tokenizer', 'prefix.txt'), default=None) as file_:
prefix = read_prefix(file_) if file_ is not None else None
with package.open(('tokenizer', 'suffix.txt'), default=None) as file_:
suffix = read_suffix(file_) if file_ is not None else None
with package.open(('tokenizer', 'infix.txt'), default=None) as file_:
infix = read_infix(file_) if file_ is not None else None
return tokenization, prefix, suffix, infix
def read_prefix(fileobj):
entries = fileobj.read().split('\n')
expression = '|'.join(['^' + re.escape(piece) for piece in entries if piece.strip()])
return expression
def read_suffix(fileobj):
entries = fileobj.read().split('\n')
expression = '|'.join([piece + '$' for piece in entries if piece.strip()])
return expression
def read_infix(fileobj):
entries = fileobj.read().split('\n')
expression = '|'.join([piece for piece in entries if piece.strip()])
return expression
# def read_tokenization(lang):
# loc = path.join(DATA_DIR, lang, 'tokenization')
# entries = []
# seen = set()
# with utf8open(loc) as file_:
# for line in file_:
# line = line.strip()
# if line.startswith('#'):
# continue
# if not line:
# continue
# pieces = line.split()
# chunk = pieces.pop(0)
# assert chunk not in seen, chunk
# seen.add(chunk)
# entries.append((chunk, list(pieces)))
# if chunk[0].isalpha() and chunk[0].islower():
# chunk = chunk[0].title() + chunk[1:]
# pieces[0] = pieces[0][0].title() + pieces[0][1:]
# seen.add(chunk)
# entries.append((chunk, pieces))
# return entries
# def read_detoken_rules(lang): # Deprecated?
# loc = path.join(DATA_DIR, lang, 'detokenize')
# entries = []
# with utf8open(loc) as file_:
# for line in file_:
# entries.append(line.strip())
# return entries
def align_tokens(ref, indices): # Deprecated, surely?
start = 0
queue = list(indices)
for token in ref:
end = start + len(token)
emit = []
while queue and queue[0][1] <= end:
emit.append(queue.pop(0))
yield token, emit
start = end
assert not queue
def detokenize(token_rules, words): # Deprecated?
"""To align with treebanks, return a list of "chunks", where a chunk is a
sequence of tokens that are separated by whitespace in actual strings. Each
chunk should be a tuple of token indices, e.g.
>>> detokenize(["ca<SEP>n't", '<SEP>!'], ["I", "ca", "n't", "!"])
[(0,), (1, 2, 3)]
"""
string = ' '.join(words)
for subtoks in token_rules:
# Algorithmically this is dumb, but writing a little list-based match
# machine? Ain't nobody got time for that.
string = string.replace(subtoks.replace('<SEP>', ' '), subtoks)
positions = []
i = 0
for chunk in string.split():
subtoks = chunk.split('<SEP>')
positions.append(tuple(range(i, i+len(subtoks))))
i += len(subtoks)
return positions