spaCy/spacy/language.py

334 lines
9.9 KiB
Python

from __future__ import absolute_import
from os import path
from warnings import warn
import io
try:
import ujson as json
except ImportError:
import json
from .tokenizer import Tokenizer
from .vocab import Vocab
from .syntax.parser import Parser
from .tagger import Tagger
from .matcher import Matcher
from .serialize.packer import Packer
from . import attrs
from . import orth
from .syntax.ner import BiluoPushDown
from .syntax.arc_eager import ArcEager
from . import util
from .attrs import TAG, DEP, ENT_IOB, ENT_TYPE, HEAD
class Language(object):
lang = None
@staticmethod
def lower(string):
return string.lower()
@staticmethod
def norm(string):
return string
@staticmethod
def shape(string):
return orth.word_shape(string)
@staticmethod
def prefix(string):
return string[0]
@staticmethod
def suffix(string):
return string[-3:]
@staticmethod
def prob(string):
return -30
@staticmethod
def cluster(string):
return 0
@staticmethod
def is_alpha(string):
return orth.is_alpha(string)
@staticmethod
def is_ascii(string):
return orth.is_ascii(string)
@staticmethod
def is_digit(string):
return string.isdigit()
@staticmethod
def is_lower(string):
return orth.is_lower(string)
@staticmethod
def is_punct(string):
return orth.is_punct(string)
@staticmethod
def is_space(string):
return string.isspace()
@staticmethod
def is_title(string):
return orth.is_title(string)
@staticmethod
def is_upper(string):
return orth.is_upper(string)
@staticmethod
def like_url(string):
return orth.like_url(string)
@staticmethod
def like_num(string):
return orth.like_number(string)
@staticmethod
def like_email(string):
return orth.like_email(string)
@staticmethod
def is_stop(string):
return 0
@classmethod
def default_lex_attrs(cls):
return {
attrs.LOWER: cls.lower,
attrs.NORM: cls.norm,
attrs.SHAPE: cls.shape,
attrs.PREFIX: cls.prefix,
attrs.SUFFIX: cls.suffix,
attrs.CLUSTER: cls.cluster,
attrs.PROB: lambda string: -10.0,
attrs.IS_ALPHA: cls.is_alpha,
attrs.IS_ASCII: cls.is_ascii,
attrs.IS_DIGIT: cls.is_digit,
attrs.IS_LOWER: cls.is_lower,
attrs.IS_PUNCT: cls.is_punct,
attrs.IS_SPACE: cls.is_space,
attrs.IS_TITLE: cls.is_title,
attrs.IS_UPPER: cls.is_upper,
attrs.LIKE_URL: cls.like_url,
attrs.LIKE_NUM: cls.like_num,
attrs.LIKE_EMAIL: cls.like_email,
attrs.IS_STOP: cls.is_stop,
attrs.IS_OOV: lambda string: True
}
@classmethod
def default_dep_labels(cls):
return {0: {'ROOT': True}}
@classmethod
def default_ner_labels(cls):
return {0: {'PER': True, 'LOC': True, 'ORG': True, 'MISC': True}}
@classmethod
def default_vocab(cls, package, get_lex_attr=None):
if get_lex_attr is None:
get_lex_attr = cls.default_lex_attrs()
if hasattr(package, 'dir_path'):
return Vocab.from_package(package, get_lex_attr=get_lex_attr)
else:
return Vocab.load(package, get_lex_attr)
@classmethod
def default_parser(cls, package, vocab):
if hasattr(package, 'dir_path'):
data_dir = package.dir_path('deps')
else:
data_dir = package
if data_dir and path.exists(data_dir):
return Parser.from_dir(data_dir, vocab.strings, ArcEager)
else:
return None
@classmethod
def default_entity(cls, package, vocab):
if hasattr(package, 'dir_path'):
data_dir = package.dir_path('ner')
else:
data_dir = package
if data_dir and path.exists(data_dir):
return Parser.from_dir(data_dir, vocab.strings, BiluoPushDown)
else:
return None
def __init__(self,
data_dir=None,
vocab=None,
tokenizer=None,
tagger=None,
parser=None,
entity=None,
matcher=None,
serializer=None,
load_vectors=True,
package=None):
"""
a model can be specified:
1) by calling a Language subclass
- spacy.en.English()
2) by calling a Language subclass with data_dir
- spacy.en.English('my/model/root')
- spacy.en.English(data_dir='my/model/root')
3) by package name
- spacy.load('en_default')
- spacy.load('en_default==1.0.0')
4) by package name with a relocated package base
- spacy.load('en_default', via='/my/package/root')
- spacy.load('en_default==1.0.0', via='/my/package/root')
"""
if package is None:
if data_dir is None:
package = util.get_package_by_name()
else:
package = util.get_package(data_dir)
if load_vectors is not True:
warn("load_vectors is deprecated", DeprecationWarning)
if vocab in (None, True):
vocab = self.default_vocab(package)
self.vocab = vocab
if tokenizer in (None, True):
tokenizer = Tokenizer.from_package(package, self.vocab)
self.tokenizer = tokenizer
if tagger in (None, True):
tagger = Tagger.from_package(package, self.vocab)
self.tagger = tagger
if entity in (None, True):
entity = self.default_entity(package, self.vocab)
self.entity = entity
if parser in (None, True):
parser = self.default_parser(package, self.vocab)
self.parser = parser
if matcher in (None, True):
matcher = Matcher.from_package(package, self.vocab)
self.matcher = matcher
def __reduce__(self):
args = (
None, # data_dir
self.vocab,
self.tokenizer,
self.tagger,
self.parser,
self.entity,
self.matcher
)
return (self.__class__, args, None, None)
def __call__(self, text, tag=True, parse=True, entity=True):
"""Apply the pipeline to some text. The text can span multiple sentences,
and can contain arbtrary whitespace. Alignment into the original string
is preserved.
Args:
text (unicode): The text to be processed.
Returns:
tokens (spacy.tokens.Doc):
>>> from spacy.en import English
>>> nlp = English()
>>> tokens = nlp('An example sentence. Another example sentence.')
>>> tokens[0].orth_, tokens[0].head.tag_
('An', 'NN')
"""
tokens = self.tokenizer(text)
if self.tagger and tag:
self.tagger(tokens)
if self.matcher and entity:
self.matcher(tokens)
if self.parser and parse:
self.parser(tokens)
if self.entity and entity:
# Add any of the entity labels already set, in case we don't have them.
for tok in tokens:
if tok.ent_type != 0:
self.entity.add_label(tok.ent_type)
self.entity(tokens)
return tokens
def pipe(self, texts, tag=True, parse=True, entity=True, n_threads=2,
batch_size=1000):
stream = self.tokenizer.pipe(texts,
n_threads=n_threads, batch_size=batch_size)
if self.tagger and tag:
stream = self.tagger.pipe(stream,
n_threads=n_threads, batch_size=batch_size)
if self.matcher and entity:
stream = self.matcher.pipe(stream,
n_threads=n_threads, batch_size=batch_size)
if self.parser and parse:
stream = self.parser.pipe(stream,
n_threads=n_threads, batch_size=batch_size)
if self.entity and entity:
stream = self.entity.pipe(stream,
n_threads=n_threads, batch_size=batch_size)
for doc in stream:
yield doc
def end_training(self, data_dir=None):
if data_dir is None:
data_dir = self.data_dir
if self.parser:
self.parser.model.end_training()
self.parser.model.dump(path.join(data_dir, 'deps', 'model'))
if self.entity:
self.entity.model.end_training()
self.entity.model.dump(path.join(data_dir, 'ner', 'model'))
if self.tagger:
self.tagger.model.end_training()
self.tagger.model.dump(path.join(data_dir, 'pos', 'model'))
strings_loc = path.join(data_dir, 'vocab', 'strings.json')
with io.open(strings_loc, 'w', encoding='utf8') as file_:
self.vocab.strings.dump(file_)
self.vocab.dump(path.join(data_dir, 'vocab', 'lexemes.bin'))
if self.tagger:
tagger_freqs = list(self.tagger.freqs[TAG].items())
else:
tagger_freqs = []
if self.parser:
dep_freqs = list(self.parser.moves.freqs[DEP].items())
head_freqs = list(self.parser.moves.freqs[HEAD].items())
else:
dep_freqs = []
head_freqs = []
if self.entity:
entity_iob_freqs = list(self.entity.moves.freqs[ENT_IOB].items())
entity_type_freqs = list(self.entity.moves.freqs[ENT_TYPE].items())
else:
entity_iob_freqs = []
entity_type_freqs = []
with open(path.join(data_dir, 'vocab', 'serializer.json'), 'w') as file_:
file_.write(
json.dumps([
(TAG, tagger_freqs),
(DEP, dep_freqs),
(ENT_IOB, entity_iob_freqs),
(ENT_TYPE, entity_type_freqs),
(HEAD, head_freqs)
]))