spaCy/bin/parser/train.py

255 lines
7.9 KiB
Python
Executable File

#!/usr/bin/env python
from __future__ import division
from __future__ import unicode_literals
import os
from os import path
import shutil
import codecs
import random
import time
import gzip
import plac
import cProfile
import pstats
import spacy.util
from spacy.en import English
from spacy.en.pos import POS_TEMPLATES, POS_TAGS, setup_model_dir
from spacy.syntax.parser import GreedyParser
from spacy.syntax.util import Config
def is_punct_label(label):
return label == 'P' or label.lower() == 'punct'
def read_tokenized_gold(file_):
"""Read a standard CoNLL/MALT-style format"""
sents = []
for sent_str in file_.read().strip().split('\n\n'):
ids = []
words = []
heads = []
labels = []
tags = []
for i, line in enumerate(sent_str.split('\n')):
word, pos_string, head_idx, label = _parse_line(line)
words.append(word)
if head_idx == -1:
head_idx = i
ids.append(id_)
heads.append(head_idx)
labels.append(label)
tags.append(pos_string)
sents.append((ids_, words, heads, labels, tags))
return sents
def read_docparse_gold(file_):
paragraphs = []
for sent_str in file_.read().strip().split('\n\n'):
words = []
heads = []
labels = []
tags = []
ids = []
lines = sent_str.strip().split('\n')
raw_text = lines[0]
tok_text = lines[1]
for i, line in enumerate(lines[2:]):
id_, word, pos_string, head_idx, label = _parse_line(line)
if label == 'root':
label = 'ROOT'
words.append(word)
if head_idx < 0:
head_idx = id_
ids.append(id_)
heads.append(head_idx)
labels.append(label)
tags.append(pos_string)
tokenized = [sent_str.replace('<SEP>', ' ').split(' ')
for sent_str in tok_text.split('<SENT>')]
paragraphs.append((raw_text, tokenized, ids, words, tags, heads, labels))
return paragraphs
def _map_indices_to_tokens(ids, heads):
mapped = []
for head in heads:
if head not in ids:
mapped.append(None)
else:
mapped.append(ids.index(head))
return mapped
def _parse_line(line):
pieces = line.split()
if len(pieces) == 4:
return 0, pieces[0], pieces[1], int(pieces[2]) - 1, pieces[3]
else:
id_ = int(pieces[0])
word = pieces[1]
pos = pieces[3]
head_idx = int(pieces[6])
label = pieces[7]
return id_, word, pos, head_idx, label
loss = 0
def _align_annotations_to_non_gold_tokens(tokens, words, annot):
global loss
tags = []
heads = []
labels = []
orig_words = list(words)
missed = []
for token in tokens:
while annot and token.idx > annot[0][0]:
miss_id, miss_tag, miss_head, miss_label = annot.pop(0)
miss_w = words.pop(0)
if not is_punct_label(miss_label):
missed.append(miss_w)
loss += 1
if not annot:
tags.append(None)
heads.append(None)
labels.append(None)
continue
id_, tag, head, label = annot[0]
if token.idx == id_:
tags.append(tag)
heads.append(head)
labels.append(label)
annot.pop(0)
words.pop(0)
elif token.idx < id_:
tags.append(None)
heads.append(None)
labels.append(None)
else:
raise StandardError
#if missed:
# print orig_words
# print missed
# for t in tokens:
# print t.idx, t.orth_
return loss, tags, heads, labels
def iter_data(paragraphs, tokenizer, gold_preproc=False):
for raw, tokenized, ids, words, tags, heads, labels in paragraphs:
if not gold_preproc:
tokens = tokenizer(raw)
loss, tags, heads, labels = _align_annotations_to_non_gold_tokens(
tokens, list(words),
zip(ids, tags, heads, labels))
ids = [t.idx for t in tokens]
heads = _map_indices_to_tokens(ids, heads)
yield tokens, tags, heads, labels
else:
assert len(words) == len(heads)
for words in tokenized:
sent_ids = ids[:len(words)]
sent_tags = tags[:len(words)]
sent_heads = heads[:len(words)]
sent_labels = labels[:len(words)]
sent_heads = _map_indices_to_tokens(sent_ids, sent_heads)
tokens = tokenizer.tokens_from_list(words)
yield tokens, sent_tags, sent_heads, sent_labels
ids = ids[len(words):]
tags = tags[len(words):]
heads = heads[len(words):]
labels = labels[len(words):]
def get_labels(sents):
left_labels = set()
right_labels = set()
for raw, tokenized, ids, words, tags, heads, labels in sents:
for child, (head, label) in enumerate(zip(heads, labels)):
if head > child:
left_labels.add(label)
elif head < child:
right_labels.add(label)
return list(sorted(left_labels)), list(sorted(right_labels))
def train(Language, paragraphs, model_dir, n_iter=15, feat_set=u'basic', seed=0,
gold_preproc=False):
dep_model_dir = path.join(model_dir, 'deps')
pos_model_dir = path.join(model_dir, 'pos')
if path.exists(dep_model_dir):
shutil.rmtree(dep_model_dir)
if path.exists(pos_model_dir):
shutil.rmtree(pos_model_dir)
os.mkdir(dep_model_dir)
os.mkdir(pos_model_dir)
setup_model_dir(sorted(POS_TAGS.keys()), POS_TAGS, POS_TEMPLATES,
pos_model_dir)
left_labels, right_labels = get_labels(paragraphs)
Config.write(dep_model_dir, 'config', features=feat_set, seed=seed,
left_labels=left_labels, right_labels=right_labels)
nlp = Language()
for itn in range(n_iter):
heads_corr = 0
pos_corr = 0
n_tokens = 0
for tokens, tag_strs, heads, labels in iter_data(paragraphs, nlp.tokenizer,
gold_preproc=gold_preproc):
nlp.tagger(tokens)
heads_corr += nlp.parser.train_sent(tokens, heads, labels, force_gold=False)
pos_corr += nlp.tagger.train(tokens, tag_strs)
n_tokens += len(tokens)
acc = float(heads_corr) / n_tokens
pos_acc = float(pos_corr) / n_tokens
print '%d: ' % itn, '%.3f' % acc, '%.3f' % pos_acc
random.shuffle(paragraphs)
nlp.parser.model.end_training()
nlp.tagger.model.end_training()
return acc
def evaluate(Language, dev_loc, model_dir, gold_preproc=False):
global loss
nlp = Language()
n_corr = 0
total = 0
skipped = 0
loss = 0
with codecs.open(dev_loc, 'r', 'utf8') as file_:
paragraphs = read_docparse_gold(file_)
for tokens, tag_strs, heads, labels in iter_data(paragraphs, nlp.tokenizer,
gold_preproc=gold_preproc):
assert len(tokens) == len(labels)
nlp.tagger(tokens)
nlp.parser(tokens)
for i, token in enumerate(tokens):
if heads[i] is None:
skipped += 1
continue
if is_punct_label(labels[i]):
continue
n_corr += token.head.i == heads[i]
total += 1
print loss, skipped, (loss+skipped + total)
return float(n_corr) / (total + loss)
def main(train_loc, dev_loc, model_dir):
with codecs.open(train_loc, 'r', 'utf8') as file_:
train_sents = read_docparse_gold(file_)
#train(English, train_sents, model_dir, gold_preproc=False)
print evaluate(English, dev_loc, model_dir, gold_preproc=False)
if __name__ == '__main__':
plac.call(main)