spaCy/spacy/displacy/__init__.py

180 lines
6.3 KiB
Python

# coding: utf8
from __future__ import unicode_literals
from .render import DependencyRenderer, EntityRenderer
from ..tokens import Doc, Span
from ..compat import b_to_str
from ..errors import Errors, Warnings, user_warning
from ..util import is_in_jupyter
_html = {}
RENDER_WRAPPER = None
def render(
docs, style="dep", page=False, minify=False, jupyter=False, options={}, manual=False
):
"""Render displaCy visualisation.
docs (list or Doc): Document(s) to visualise.
style (unicode): Visualisation style, 'dep' or 'ent'.
page (bool): Render markup as full HTML page.
minify (bool): Minify HTML markup.
jupyter (bool): Experimental, use Jupyter's `display()` to output markup.
options (dict): Visualiser-specific options, e.g. colors.
manual (bool): Don't parse `Doc` and instead expect a dict/list of dicts.
RETURNS (unicode): Rendered HTML markup.
"""
factories = {
"dep": (DependencyRenderer, parse_deps),
"ent": (EntityRenderer, parse_ents),
}
if style not in factories:
raise ValueError(Errors.E087.format(style=style))
if isinstance(docs, (Doc, Span, dict)):
docs = [docs]
docs = [obj if not isinstance(obj, Span) else obj.as_doc() for obj in docs]
if not all(isinstance(obj, (Doc, Span, dict)) for obj in docs):
raise ValueError(Errors.E096)
renderer, converter = factories[style]
renderer = renderer(options=options)
parsed = [converter(doc, options) for doc in docs] if not manual else docs
_html["parsed"] = renderer.render(parsed, page=page, minify=minify).strip()
html = _html["parsed"]
if RENDER_WRAPPER is not None:
html = RENDER_WRAPPER(html)
if jupyter or is_in_jupyter(): # return HTML rendered by IPython display()
from IPython.core.display import display, HTML
return display(HTML(html))
return html
def serve(
docs,
style="dep",
page=True,
minify=False,
options={},
manual=False,
port=5000,
host="0.0.0.0",
):
"""Serve displaCy visualisation.
docs (list or Doc): Document(s) to visualise.
style (unicode): Visualisation style, 'dep' or 'ent'.
page (bool): Render markup as full HTML page.
minify (bool): Minify HTML markup.
options (dict): Visualiser-specific options, e.g. colors.
manual (bool): Don't parse `Doc` and instead expect a dict/list of dicts.
port (int): Port to serve visualisation.
host (unicode): Host to serve visualisation.
"""
from wsgiref import simple_server
if is_in_jupyter():
user_warning(Warnings.W011)
render(docs, style=style, page=page, minify=minify, options=options, manual=manual)
httpd = simple_server.make_server(host, port, app)
print("\nUsing the '{}' visualizer".format(style))
print("Serving on http://{}:{} ...\n".format(host, port))
try:
httpd.serve_forever()
except KeyboardInterrupt:
print("Shutting down server on port {}.".format(port))
finally:
httpd.server_close()
def app(environ, start_response):
# Headers and status need to be bytes in Python 2, see #1227
headers = [(b_to_str(b"Content-type"), b_to_str(b"text/html; charset=utf-8"))]
start_response(b_to_str(b"200 OK"), headers)
res = _html["parsed"].encode(encoding="utf-8")
return [res]
def parse_deps(orig_doc, options={}):
"""Generate dependency parse in {'words': [], 'arcs': []} format.
doc (Doc): Document do parse.
RETURNS (dict): Generated dependency parse keyed by words and arcs.
"""
doc = Doc(orig_doc.vocab).from_bytes(orig_doc.to_bytes())
if not doc.is_parsed:
user_warning(Warnings.W005)
if options.get("collapse_phrases", False):
for np in list(doc.noun_chunks):
np.merge(tag=np.root.tag_, lemma=np.root.lemma_, ent_type=np.root.ent_type_)
if options.get("collapse_punct", True):
spans = []
for word in doc[:-1]:
if word.is_punct or not word.nbor(1).is_punct:
continue
start = word.i
end = word.i + 1
while end < len(doc) and doc[end].is_punct:
end += 1
span = doc[start:end]
spans.append(
(span.start_char, span.end_char, word.tag_, word.lemma_, word.ent_type_)
)
for start, end, tag, lemma, ent_type in spans:
doc.merge(start, end, tag=tag, lemma=lemma, ent_type=ent_type)
if options.get("fine_grained"):
words = [{"text": w.text, "tag": w.tag_} for w in doc]
else:
words = [{"text": w.text, "tag": w.pos_} for w in doc]
arcs = []
for word in doc:
if word.i < word.head.i:
arcs.append(
{"start": word.i, "end": word.head.i, "label": word.dep_, "dir": "left"}
)
elif word.i > word.head.i:
arcs.append(
{
"start": word.head.i,
"end": word.i,
"label": word.dep_,
"dir": "right",
}
)
return {"words": words, "arcs": arcs}
def parse_ents(doc, options={}):
"""Generate named entities in [{start: i, end: i, label: 'label'}] format.
doc (Doc): Document do parse.
RETURNS (dict): Generated entities keyed by text (original text) and ents.
"""
ents = [
{"start": ent.start_char, "end": ent.end_char, "label": ent.label_}
for ent in doc.ents
]
if not ents:
user_warning(Warnings.W006)
title = doc.user_data.get("title", None) if hasattr(doc, "user_data") else None
return {"text": doc.text, "ents": ents, "title": title}
def set_render_wrapper(func):
"""Set an optional wrapper function that is called around the generated
HTML markup on displacy.render. This can be used to allow integration into
other platforms, similar to Jupyter Notebooks that require functions to be
called around the HTML. It can also be used to implement custom callbacks
on render, or to embed the visualization in a custom page.
func (callable): Function to call around markup before rendering it. Needs
to take one argument, the HTML markup, and should return the desired
output of displacy.render.
"""
global RENDER_WRAPPER
if not hasattr(func, "__call__"):
raise ValueError(Errors.E110.format(obj=type(func)))
RENDER_WRAPPER = func