# cython: infer_types=True, profile=True, binding=True import srsly from thinc.api import Model, SequenceCategoricalCrossentropy, Config from ..tokens.doc cimport Doc from .pipe import deserialize_config from .tagger import Tagger from ..language import Language from ..errors import Errors from ..scorer import Scorer from .. import util default_model_config = """ [model] @architectures = "spacy.Tagger.v1" [model.tok2vec] @architectures = "spacy.HashEmbedCNN.v1" pretrained_vectors = null width = 12 depth = 1 embed_size = 2000 window_size = 1 maxout_pieces = 2 subword_features = true dropout = null """ DEFAULT_SENTER_MODEL = Config().from_str(default_model_config)["model"] @Language.factory( "senter", assigns=["token.is_sent_start"], default_config={"model": DEFAULT_SENTER_MODEL}, scores=["sents_p", "sents_r", "sents_f"], score_weights={"sents_p": 0.0, "sents_r": 0.0, "sents_f": 1.0}, ) def make_senter(nlp: Language, name: str, model: Model): return SentenceRecognizer(nlp.vocab, model, name) class SentenceRecognizer(Tagger): """Pipeline component for sentence segmentation. DOCS: https://spacy.io/api/sentencerecognizer """ def __init__(self, vocab, model, name="senter"): self.vocab = vocab self.model = model self.name = name self._rehearsal_model = None self.cfg = {} @property def labels(self): # labels are numbered by index internally, so this matches GoldParse # and Example where the sentence-initial tag is 1 and other positions # are 0 return tuple(["I", "S"]) def set_annotations(self, docs, batch_tag_ids): if isinstance(docs, Doc): docs = [docs] cdef Doc doc for i, doc in enumerate(docs): doc_tag_ids = batch_tag_ids[i] if hasattr(doc_tag_ids, "get"): doc_tag_ids = doc_tag_ids.get() for j, tag_id in enumerate(doc_tag_ids): # Don't clobber existing sentence boundaries if doc.c[j].sent_start == 0: if tag_id == 1: doc.c[j].sent_start = 1 else: doc.c[j].sent_start = -1 def get_loss(self, examples, scores): labels = self.labels loss_func = SequenceCategoricalCrossentropy(names=labels, normalize=False) truths = [] for eg in examples: eg_truth = [] for x in eg.get_aligned("sent_start"): if x == None: eg_truth.append(None) elif x == 1: eg_truth.append(labels[1]) else: # anything other than 1: 0, -1, -1 as uint64 eg_truth.append(labels[0]) truths.append(eg_truth) d_scores, loss = loss_func(scores, truths) if self.model.ops.xp.isnan(loss): raise ValueError("nan value when computing loss") return float(loss), d_scores def begin_training(self, get_examples=lambda: [], pipeline=None, sgd=None): self.set_output(len(self.labels)) self.model.initialize() util.link_vectors_to_models(self.vocab) if sgd is None: sgd = self.create_optimizer() return sgd def add_label(self, label, values=None): raise NotImplementedError def score(self, examples, **kwargs): return Scorer.score_spans(examples, "sents", **kwargs) def to_bytes(self, exclude=tuple()): serialize = {} serialize["model"] = self.model.to_bytes serialize["vocab"] = self.vocab.to_bytes serialize["cfg"] = lambda: srsly.json_dumps(self.cfg) return util.to_bytes(serialize, exclude) def from_bytes(self, bytes_data, exclude=tuple()): def load_model(b): try: self.model.from_bytes(b) except AttributeError: raise ValueError(Errors.E149) deserialize = { "vocab": lambda b: self.vocab.from_bytes(b), "cfg": lambda b: self.cfg.update(srsly.json_loads(b)), "model": lambda b: load_model(b), } util.from_bytes(bytes_data, deserialize, exclude) return self def to_disk(self, path, exclude=tuple()): serialize = { "vocab": lambda p: self.vocab.to_disk(p), "model": lambda p: p.open("wb").write(self.model.to_bytes()), "cfg": lambda p: srsly.write_json(p, self.cfg), } util.to_disk(path, serialize, exclude) def from_disk(self, path, exclude=tuple()): def load_model(p): with p.open("rb") as file_: try: self.model.from_bytes(file_.read()) except AttributeError: raise ValueError(Errors.E149) deserialize = { "vocab": lambda p: self.vocab.from_disk(p), "cfg": lambda p: self.cfg.update(deserialize_config(p)), "model": load_model, } util.from_disk(path, deserialize, exclude) return self