# cython: infer_types=True # cython: cdivision=True # cython: boundscheck=False cimport cython.parallel cimport numpy as np from cpython.ref cimport PyObject, Py_XDECREF from cpython.exc cimport PyErr_CheckSignals, PyErr_SetFromErrno from libc.math cimport exp from libcpp.vector cimport vector from libc.string cimport memset, memcpy from libc.stdlib cimport calloc, free from cymem.cymem cimport Pool from thinc.extra.search cimport Beam from thinc.backends.linalg cimport Vec, VecVec from thinc.api import chain, clone, Linear, list2array, NumpyOps, CupyOps, use_ops from thinc.api import get_array_module, zero_init, set_dropout_rate from itertools import islice import srsly import numpy.random import numpy from ..gold import Example from ..typedefs cimport weight_t, class_t, hash_t from ._parser_model cimport alloc_activations, free_activations from ._parser_model cimport predict_states, arg_max_if_valid from ._parser_model cimport WeightsC, ActivationsC, SizesC, cpu_log_loss from ._parser_model cimport get_c_weights, get_c_sizes from ._parser_model import ParserModel from ..util import link_vectors_to_models, create_default_optimizer from ..compat import copy_array from ..tokens.doc cimport Doc from ..gold cimport GoldParse from ..errors import Errors, TempErrors from .. import util from .stateclass cimport StateClass from ._state cimport StateC from .transition_system cimport Transition from . cimport _beam_utils from . import _beam_utils from . import nonproj from ..ml._layers import PrecomputableAffine from ..ml.component_models import Tok2Vec cdef class Parser: """ Base class of the DependencyParser and EntityRecognizer. """ @classmethod def Model(cls, nr_class, **cfg): depth = util.env_opt('parser_hidden_depth', cfg.get('hidden_depth', 1)) subword_features = util.env_opt('subword_features', cfg.get('subword_features', True)) conv_depth = util.env_opt('conv_depth', cfg.get('conv_depth', 4)) conv_window = util.env_opt('conv_window', cfg.get('conv_window', 1)) t2v_pieces = util.env_opt('cnn_maxout_pieces', cfg.get('cnn_maxout_pieces', 3)) bilstm_depth = util.env_opt('bilstm_depth', cfg.get('bilstm_depth', 0)) self_attn_depth = util.env_opt('self_attn_depth', cfg.get('self_attn_depth', 0)) nr_feature_tokens = cfg.get("nr_feature_tokens", cls.nr_feature) if depth not in (0, 1): raise ValueError(TempErrors.T004.format(value=depth)) parser_maxout_pieces = util.env_opt('parser_maxout_pieces', cfg.get('maxout_pieces', 2)) token_vector_width = util.env_opt('token_vector_width', cfg.get('token_vector_width', 96)) hidden_width = util.env_opt('hidden_width', cfg.get('hidden_width', 64)) if depth == 0: hidden_width = nr_class parser_maxout_pieces = 1 embed_size = util.env_opt('embed_size', cfg.get('embed_size', 2000)) pretrained_vectors = cfg.get('pretrained_vectors', None) tok2vec = Tok2Vec(width=token_vector_width, embed_size=embed_size, conv_depth=conv_depth, window_size=conv_window, cnn_maxout_pieces=t2v_pieces, subword_features=subword_features, pretrained_vectors=pretrained_vectors, bilstm_depth=bilstm_depth) tok2vec = chain(tok2vec, list2array()) tok2vec.set_dim("nO", token_vector_width) lower = PrecomputableAffine(hidden_width, nF=nr_feature_tokens, nI=token_vector_width, nP=parser_maxout_pieces) lower.set_dim("nP", parser_maxout_pieces) if depth == 1: with use_ops('numpy'): upper = Linear(nr_class, hidden_width, init_W=zero_init) else: upper = None cfg = { 'nr_class': nr_class, 'nr_feature_tokens': nr_feature_tokens, 'hidden_depth': depth, 'token_vector_width': token_vector_width, 'hidden_width': hidden_width, 'maxout_pieces': parser_maxout_pieces, 'pretrained_vectors': pretrained_vectors, 'bilstm_depth': bilstm_depth, 'self_attn_depth': self_attn_depth, 'conv_depth': conv_depth, 'window_size': conv_window, 'embed_size': embed_size, 'cnn_maxout_pieces': t2v_pieces } model = ParserModel(tok2vec, lower, upper) model.initialize() return model, cfg name = 'base_parser' def __init__(self, Vocab vocab, moves=True, model=True, **cfg): """Create a Parser. vocab (Vocab): The vocabulary object. Must be shared with documents to be processed. The value is set to the `.vocab` attribute. moves (TransitionSystem): Defines how the parse-state is created, updated and evaluated. The value is set to the .moves attribute unless True (default), in which case a new instance is created with `Parser.Moves()`. model (object): Defines how the parse-state is created, updated and evaluated. The value is set to the .model attribute. If set to True (default), a new instance will be created with `Parser.Model()` in parser.begin_training(), parser.from_disk() or parser.from_bytes(). **cfg: Arbitrary configuration parameters. Set to the `.cfg` attribute """ self.vocab = vocab if moves is True: self.moves = self.TransitionSystem(self.vocab.strings) else: self.moves = moves if 'beam_width' not in cfg: cfg['beam_width'] = util.env_opt('beam_width', 1) if 'beam_density' not in cfg: cfg['beam_density'] = util.env_opt('beam_density', 0.0) if 'beam_update_prob' not in cfg: cfg['beam_update_prob'] = util.env_opt('beam_update_prob', 1.0) cfg.setdefault('cnn_maxout_pieces', 3) cfg.setdefault("nr_feature_tokens", self.nr_feature) self.cfg = cfg self.model = model self._multitasks = [] self._rehearsal_model = None @classmethod def from_nlp(cls, nlp, **cfg): return cls(nlp.vocab, **cfg) def __reduce__(self): return (Parser, (self.vocab, self.moves, self.model), None, None) @property def move_names(self): names = [] for i in range(self.moves.n_moves): name = self.moves.move_name(self.moves.c[i].move, self.moves.c[i].label) # Explicitly removing the internal "U-" token used for blocking entities if name != "U-": names.append(name) return names nr_feature = 8 @property def labels(self): class_names = [self.moves.get_class_name(i) for i in range(self.moves.n_moves)] return class_names @property def tok2vec(self): '''Return the embedding and convolutional layer of the model.''' return None if self.model in (None, True, False) else self.model.tok2vec @property def postprocesses(self): # Available for subclasses, e.g. to deprojectivize return [] def add_label(self, label): resized = False for action in self.moves.action_types: added = self.moves.add_action(action, label) if added: resized = True if resized: self._resize() def _resize(self): if "nr_class" in self.cfg: self.cfg["nr_class"] = self.moves.n_moves if self.model not in (True, False, None): self.model.resize_output(self.moves.n_moves) if self._rehearsal_model not in (True, False, None): self._rehearsal_model.resize_output(self.moves.n_moves) def add_multitask_objective(self, target): # Defined in subclasses, to avoid circular import raise NotImplementedError def init_multitask_objectives(self, get_examples, pipeline, **cfg): '''Setup models for secondary objectives, to benefit from multi-task learning. This method is intended to be overridden by subclasses. For instance, the dependency parser can benefit from sharing an input representation with a label prediction model. These auxiliary models are discarded after training. ''' pass def preprocess_gold(self, examples): for ex in examples: yield ex def use_params(self, params): # Can't decorate cdef class :(. Workaround. with self.model.use_params(params): yield def __call__(self, Doc doc, beam_width=None): """Apply the parser or entity recognizer, setting the annotations onto the `Doc` object. doc (Doc): The document to be processed. """ if beam_width is None: beam_width = self.cfg.get('beam_width', 1) beam_density = self.cfg.get('beam_density', 0.) states = self.predict([doc], beam_width=beam_width, beam_density=beam_density) self.set_annotations([doc], states, tensors=None) return doc def pipe(self, docs, int batch_size=256, int n_threads=-1, beam_width=None, as_example=False): """Process a stream of documents. stream: The sequence of documents to process. batch_size (int): Number of documents to accumulate into a working set. YIELDS (Doc): Documents, in order. """ if beam_width is None: beam_width = self.cfg.get('beam_width', 1) beam_density = self.cfg.get('beam_density', 0.) cdef Doc doc for batch in util.minibatch(docs, size=batch_size): batch_in_order = list(batch) docs = [self._get_doc(ex) for ex in batch_in_order] by_length = sorted(docs, key=lambda doc: len(doc)) for subbatch in util.minibatch(by_length, size=max(batch_size//4, 2)): subbatch = list(subbatch) parse_states = self.predict(subbatch, beam_width=beam_width, beam_density=beam_density) self.set_annotations(subbatch, parse_states, tensors=None) if as_example: annotated_examples = [] for ex, doc in zip(batch_in_order, docs): ex.doc = doc annotated_examples.append(ex) yield from annotated_examples else: yield from batch_in_order def require_model(self): """Raise an error if the component's model is not initialized.""" if getattr(self, 'model', None) in (None, True, False): raise ValueError(Errors.E109.format(name=self.name)) def predict(self, docs, beam_width=1, beam_density=0.0, drop=0.): self.require_model() if isinstance(docs, Doc): docs = [docs] if not any(len(doc) for doc in docs): result = self.moves.init_batch(docs) self._resize() return result if beam_width < 2: return self.greedy_parse(docs, drop=drop) else: return self.beam_parse(docs, beam_width=beam_width, beam_density=beam_density, drop=drop) def greedy_parse(self, docs, drop=0.): cdef vector[StateC*] states cdef StateClass state set_dropout_rate(self.model, drop) batch = self.moves.init_batch(docs) # This is pretty dirty, but the NER can resize itself in init_batch, # if labels are missing. We therefore have to check whether we need to # expand our model output. self._resize() model = self.model.predict(docs) weights = get_c_weights(model) for state in batch: if not state.is_final(): states.push_back(state.c) sizes = get_c_sizes(model, states.size()) with nogil: self._parseC(&states[0], weights, sizes) return batch def beam_parse(self, docs, int beam_width, float drop=0., beam_density=0.): cdef Beam beam cdef Doc doc cdef np.ndarray token_ids set_dropout_rate(self.model, drop) beams = self.moves.init_beams(docs, beam_width, beam_density=beam_density) # This is pretty dirty, but the NER can resize itself in init_batch, # if labels are missing. We therefore have to check whether we need to # expand our model output. self._resize() model = self.model.predict(docs) token_ids = numpy.zeros((len(docs) * beam_width, self.nr_feature), dtype='i', order='C') cdef int* c_ids cdef int nr_feature = self.cfg["nr_feature_tokens"] cdef int n_states model = self.model.predict(docs) todo = [beam for beam in beams if not beam.is_done] while todo: token_ids.fill(-1) c_ids = token_ids.data n_states = 0 for beam in todo: for i in range(beam.size): state = beam.at(i) # This way we avoid having to score finalized states # We do have to take care to keep indexes aligned, though if not state.is_final(): state.set_context_tokens(c_ids, nr_feature) c_ids += nr_feature n_states += 1 if n_states == 0: break vectors = model.state2vec.predict(token_ids[:n_states]) scores = model.vec2scores.predict(vectors) todo = self.transition_beams(todo, scores) return beams cdef void _parseC(self, StateC** states, WeightsC weights, SizesC sizes) nogil: cdef int i, j cdef vector[StateC*] unfinished cdef ActivationsC activations = alloc_activations(sizes) while sizes.states >= 1: predict_states(&activations, states, &weights, sizes) # Validate actions, argmax, take action. self.c_transition_batch(states, activations.scores, sizes.classes, sizes.states) for i in range(sizes.states): if not states[i].is_final(): unfinished.push_back(states[i]) for i in range(unfinished.size()): states[i] = unfinished[i] sizes.states = unfinished.size() unfinished.clear() free_activations(&activations) def set_annotations(self, docs, states_or_beams, tensors=None): cdef StateClass state cdef Beam beam cdef Doc doc states = [] beams = [] for state_or_beam in states_or_beams: if isinstance(state_or_beam, StateClass): states.append(state_or_beam) else: beam = state_or_beam state = StateClass.borrow(beam.at(0)) states.append(state) beams.append(beam) for i, (state, doc) in enumerate(zip(states, docs)): self.moves.finalize_state(state.c) for j in range(doc.length): doc.c[j] = state.c._sent[j] self.moves.finalize_doc(doc) for hook in self.postprocesses: hook(doc) for beam in beams: _beam_utils.cleanup_beam(beam) def transition_states(self, states, float[:, ::1] scores): cdef StateClass state cdef float* c_scores = &scores[0, 0] cdef vector[StateC*] c_states for state in states: c_states.push_back(state.c) self.c_transition_batch(&c_states[0], c_scores, scores.shape[1], scores.shape[0]) return [state for state in states if not state.c.is_final()] cdef void c_transition_batch(self, StateC** states, const float* scores, int nr_class, int batch_size) nogil: # n_moves should not be zero at this point, but make sure to avoid zero-length mem alloc with gil: assert self.moves.n_moves > 0 is_valid = calloc(self.moves.n_moves, sizeof(int)) cdef int i, guess cdef Transition action for i in range(batch_size): self.moves.set_valid(is_valid, states[i]) guess = arg_max_if_valid(&scores[i*nr_class], is_valid, nr_class) if guess == -1: # This shouldn't happen, but it's hard to raise an error here, # and we don't want to infinite loop. So, force to end state. states[i].force_final() else: action = self.moves.c[guess] action.do(states[i], action.label) states[i].push_hist(guess) free(is_valid) def transition_beams(self, beams, float[:, ::1] scores): cdef Beam beam cdef float* c_scores = &scores[0, 0] for beam in beams: for i in range(beam.size): state = beam.at(i) if not state.is_final(): self.moves.set_valid(beam.is_valid[i], state) memcpy(beam.scores[i], c_scores, scores.shape[1] * sizeof(float)) c_scores += scores.shape[1] beam.advance(_beam_utils.transition_state, _beam_utils.hash_state, self.moves.c) beam.check_done(_beam_utils.check_final_state, NULL) return [b for b in beams if not b.is_done] def update(self, examples, drop=0., set_annotations=False, sgd=None, losses=None): self.require_model() examples = Example.to_example_objects(examples) if losses is None: losses = {} losses.setdefault(self.name, 0.) for multitask in self._multitasks: multitask.update(examples, drop=drop, sgd=sgd) # The probability we use beam update, instead of falling back to # a greedy update beam_update_prob = self.cfg.get('beam_update_prob', 0.5) if self.cfg.get('beam_width', 1) >= 2 and numpy.random.random() < beam_update_prob: return self.update_beam(examples, self.cfg.get('beam_width', 1), drop=drop, sgd=sgd, losses=losses, set_annotations=set_annotations, beam_density=self.cfg.get('beam_density', 0.001)) set_dropout_rate(self.model, drop) # Chop sequences into lengths of this many transitions, to make the # batch uniform length. cut_gold = numpy.random.choice(range(20, 100)) states, golds, max_steps = self._init_gold_batch(examples, max_length=cut_gold) states_golds = [(s, g) for (s, g) in zip(states, golds) if not s.is_final() and g is not None] # Prepare the stepwise model, and get the callback for finishing the batch model, backprop_tok2vec = self.model.begin_update([ex.doc for ex in examples]) all_states = list(states) for _ in range(max_steps): if not states_golds: break states, golds = zip(*states_golds) scores, backprop = model.begin_update(states) d_scores = self.get_batch_loss(states, golds, scores, losses) backprop(d_scores) # Follow the predicted action self.transition_states(states, scores) states_golds = [eg for eg in states_golds if not eg[0].is_final()] backprop_tok2vec(golds) if sgd is not None: self.model.finish_update(sgd) if set_annotations: docs = [ex.doc for ex in examples] self.set_annotations(docs, all_states) return losses def rehearse(self, examples, sgd=None, losses=None, **cfg): """Perform a "rehearsal" update, to prevent catastrophic forgetting.""" examples = Example.to_example_objects(examples) if losses is None: losses = {} for multitask in self._multitasks: if hasattr(multitask, 'rehearse'): multitask.rehearse(examples, losses=losses, sgd=sgd) if self._rehearsal_model is None: return None losses.setdefault(self.name, 0.) docs = [ex.doc for ex in examples] states = self.moves.init_batch(docs) # This is pretty dirty, but the NER can resize itself in init_batch, # if labels are missing. We therefore have to check whether we need to # expand our model output. self._resize() # Prepare the stepwise model, and get the callback for finishing the batch set_dropout_rate(self._rehearsal_model, 0.0) set_dropout_rate(self.model, 0.0) tutor, _ = self._rehearsal_model.begin_update(docs) model, finish_update = self.model.begin_update(docs) n_scores = 0. loss = 0. while states: targets, _ = tutor.begin_update(states) guesses, backprop = model.begin_update(states) d_scores = (guesses - targets) / targets.shape[0] # If all weights for an output are 0 in the original model, don't # supervise that output. This allows us to add classes. loss += (d_scores**2).sum() backprop(d_scores, sgd=sgd) # Follow the predicted action self.transition_states(states, guesses) states = [state for state in states if not state.is_final()] n_scores += d_scores.size # Do the backprop finish_update(docs) if sgd is not None: self.model.finish_update(sgd) losses[self.name] += loss / n_scores return losses def update_beam(self, examples, width, drop=0., sgd=None, losses=None, set_annotations=False, beam_density=0.0): examples = Example.to_example_objects(examples) docs = [ex.doc for ex in examples] golds = [ex.gold for ex in examples] new_golds = [] lengths = [len(d) for d in docs] states = self.moves.init_batch(docs) for gold in golds: self.moves.preprocess_gold(gold) new_golds.append(gold) set_dropout_rate(self.model, drop) model, backprop_tok2vec = self.model.begin_update(docs) states_d_scores, backprops, beams = _beam_utils.update_beam( self.moves, self.cfg["nr_feature_tokens"], 10000, states, golds, model.state2vec, model.vec2scores, width, losses=losses, beam_density=beam_density) for i, d_scores in enumerate(states_d_scores): losses[self.name] += (d_scores**2).mean() ids, bp_vectors, bp_scores = backprops[i] d_vector = bp_scores(d_scores) if isinstance(model.ops, CupyOps) \ and not isinstance(ids, model.state2vec.ops.xp.ndarray): model.backprops.append(( util.get_async(model.cuda_stream, ids), util.get_async(model.cuda_stream, d_vector), bp_vectors)) else: model.backprops.append((ids, d_vector, bp_vectors)) backprop_tok2vec(golds) if sgd is not None: self.model.finish_update(sgd) if set_annotations: self.set_annotations(docs, beams) cdef Beam beam for beam in beams: _beam_utils.cleanup_beam(beam) def get_gradients(self): """Get non-zero gradients of the model's parameters, as a dictionary keyed by the parameter ID. The values are (weights, gradients) tuples. """ gradients = {} if self.model in (None, True, False): return gradients queue = [self.model] seen = set() for node in queue: if node.id in seen: continue seen.add(node.id) if hasattr(node, "_mem") and node._mem.gradient.any(): gradients[node.id] = [node._mem.weights, node._mem.gradient] if hasattr(node, "_layers"): queue.extend(node._layers) return gradients def _init_gold_batch(self, whole_examples, min_length=5, max_length=500): """Make a square batch, of length equal to the shortest doc. A long doc will get multiple states. Let's say we have a doc of length 2*N, where N is the shortest doc. We'll make two states, one representing long_doc[:N], and another representing long_doc[N:].""" cdef: StateClass state Transition action whole_docs = [ex.doc for ex in whole_examples] whole_golds = [ex.gold for ex in whole_examples] whole_states = self.moves.init_batch(whole_docs) max_length = max(min_length, min(max_length, min([len(doc) for doc in whole_docs]))) max_moves = 0 states = [] golds = [] for doc, state, gold in zip(whole_docs, whole_states, whole_golds): gold = self.moves.preprocess_gold(gold) if gold is None: continue oracle_actions = self.moves.get_oracle_sequence(doc, gold) start = 0 while start < len(doc): state = state.copy() n_moves = 0 while state.B(0) < start and not state.is_final(): action = self.moves.c[oracle_actions.pop(0)] action.do(state.c, action.label) state.c.push_hist(action.clas) n_moves += 1 has_gold = self.moves.has_gold(gold, start=start, end=start+max_length) if not state.is_final() and has_gold: states.append(state) golds.append(gold) max_moves = max(max_moves, n_moves) start += min(max_length, len(doc)-start) max_moves = max(max_moves, len(oracle_actions)) return states, golds, max_moves def get_batch_loss(self, states, golds, float[:, ::1] scores, losses): cdef StateClass state cdef GoldParse gold cdef Pool mem = Pool() cdef int i # n_moves should not be zero at this point, but make sure to avoid zero-length mem alloc assert self.moves.n_moves > 0 is_valid = mem.alloc(self.moves.n_moves, sizeof(int)) costs = mem.alloc(self.moves.n_moves, sizeof(float)) cdef np.ndarray d_scores = numpy.zeros((len(states), self.moves.n_moves), dtype='f', order='C') c_d_scores = d_scores.data for i, (state, gold) in enumerate(zip(states, golds)): memset(is_valid, 0, self.moves.n_moves * sizeof(int)) memset(costs, 0, self.moves.n_moves * sizeof(float)) self.moves.set_costs(is_valid, costs, state, gold) for j in range(self.moves.n_moves): if costs[j] <= 0.0 and j in self.model.unseen_classes: self.model.unseen_classes.remove(j) cpu_log_loss(c_d_scores, costs, is_valid, &scores[i, 0], d_scores.shape[1]) c_d_scores += d_scores.shape[1] if losses is not None: losses.setdefault(self.name, 0.) losses[self.name] += (d_scores**2).sum() return d_scores def create_optimizer(self): return create_default_optimizer() def begin_training(self, get_examples, pipeline=None, sgd=None, **cfg): if 'model' in cfg: self.model = cfg['model'] if not hasattr(get_examples, '__call__'): gold_tuples = get_examples get_examples = lambda: gold_tuples cfg.setdefault('min_action_freq', 30) actions = self.moves.get_actions(gold_parses=get_examples(), min_freq=cfg.get('min_action_freq', 30), learn_tokens=self.cfg.get("learn_tokens", False)) for action, labels in self.moves.labels.items(): actions.setdefault(action, {}) for label, freq in labels.items(): if label not in actions[action]: actions[action][label] = freq self.moves.initialize_actions(actions) cfg.setdefault('token_vector_width', 96) if self.model is True: self.model, cfg = self.Model(self.moves.n_moves, **cfg) if sgd is None: sgd = self.create_optimizer() doc_sample = [] gold_sample = [] for example in islice(get_examples(), 1000): parses = example.get_gold_parses(merge=False, vocab=self.vocab) for doc, gold in parses: doc_sample.append(doc) gold_sample.append(gold) self.model.initialize(doc_sample, gold_sample) if pipeline is not None: self.init_multitask_objectives(get_examples, pipeline, sgd=sgd, **cfg) link_vectors_to_models(self.vocab) else: if sgd is None: sgd = self.create_optimizer() if self.model.upper.has_dim("nO") is None: self.model.upper.set_dim("nO", self.moves.n_moves) self.model.initialize() self.cfg.update(cfg) return sgd def _get_doc(self, example): """ Use this method if the `example` can be both a Doc or an Example """ if isinstance(example, Doc): return example return example.doc def to_disk(self, path, exclude=tuple(), **kwargs): serializers = { 'model': lambda p: (self.model.to_disk(p) if self.model is not True else True), 'vocab': lambda p: self.vocab.to_disk(p), 'moves': lambda p: self.moves.to_disk(p, exclude=["strings"]), 'cfg': lambda p: srsly.write_json(p, self.cfg) } exclude = util.get_serialization_exclude(serializers, exclude, kwargs) util.to_disk(path, serializers, exclude) def from_disk(self, path, exclude=tuple(), **kwargs): deserializers = { 'vocab': lambda p: self.vocab.from_disk(p), 'moves': lambda p: self.moves.from_disk(p, exclude=["strings"]), 'cfg': lambda p: self.cfg.update(srsly.read_json(p)), 'model': lambda p: None } exclude = util.get_serialization_exclude(deserializers, exclude, kwargs) util.from_disk(path, deserializers, exclude) if 'model' not in exclude: path = util.ensure_path(path) if self.model is True: self.model, cfg = self.Model(**self.cfg) else: cfg = {} with (path / 'model').open('rb') as file_: bytes_data = file_.read() try: self.model.from_bytes(bytes_data) except AttributeError: raise ValueError(Errors.E149) self.cfg.update(cfg) return self def to_bytes(self, exclude=tuple(), **kwargs): serializers = { "model": lambda: (self.model.to_bytes() if self.model is not True else True), "vocab": lambda: self.vocab.to_bytes(), "moves": lambda: self.moves.to_bytes(exclude=["strings"]), "cfg": lambda: srsly.json_dumps(self.cfg, indent=2, sort_keys=True) } exclude = util.get_serialization_exclude(serializers, exclude, kwargs) return util.to_bytes(serializers, exclude) def from_bytes(self, bytes_data, exclude=tuple(), **kwargs): deserializers = { "vocab": lambda b: self.vocab.from_bytes(b), "moves": lambda b: self.moves.from_bytes(b, exclude=["strings"]), "cfg": lambda b: self.cfg.update(srsly.json_loads(b)), "model": lambda b: None } exclude = util.get_serialization_exclude(deserializers, exclude, kwargs) msg = util.from_bytes(bytes_data, deserializers, exclude) if 'model' not in exclude: # TODO: Remove this once we don't have to handle previous models if self.cfg.get('pretrained_dims') and 'pretrained_vectors' not in self.cfg: self.cfg['pretrained_vectors'] = self.vocab.vectors if self.model is True: self.model, cfg = self.Model(**self.cfg) else: cfg = {} if 'model' in msg: try: self.model.from_bytes(msg['model']) except AttributeError: raise ValueError(Errors.E149) self.cfg.update(cfg) return self