# coding: utf8 from __future__ import unicode_literals, division, print_function import plac from timeit import default_timer as timer from wasabi import Printer from ..gold import GoldCorpus from .. import util from .. import displacy @plac.annotations( model=("Model name or path", "positional", None, str), data_path=("Location of JSON-formatted evaluation data", "positional", None, str), gold_preproc=("Use gold preprocessing", "flag", "G", bool), gpu_id=("Use GPU", "option", "g", int), displacy_path=("Directory to output rendered parses as HTML", "option", "dp", str), displacy_limit=("Limit of parses to render as HTML", "option", "dl", int), return_scores=("Return dict containing model scores", "flag", "R", bool), ) def evaluate( model, data_path, gpu_id=-1, gold_preproc=False, displacy_path=None, displacy_limit=25, return_scores=False, ): """ Evaluate a model. To render a sample of parses in a HTML file, set an output directory as the displacy_path argument. """ msg = Printer() util.fix_random_seed() if gpu_id >= 0: util.use_gpu(gpu_id) util.set_env_log(False) data_path = util.ensure_path(data_path) displacy_path = util.ensure_path(displacy_path) if not data_path.exists(): msg.fail("Evaluation data not found", data_path, exits=1) if displacy_path and not displacy_path.exists(): msg.fail("Visualization output directory not found", displacy_path, exits=1) corpus = GoldCorpus(data_path, data_path) nlp = util.load_model(model) dev_docs = list(corpus.dev_docs(nlp, gold_preproc=gold_preproc)) begin = timer() scorer = nlp.evaluate(dev_docs, verbose=False) end = timer() nwords = sum(len(doc_gold[0]) for doc_gold in dev_docs) results = { "Time": "%.2f s" % (end - begin), "Words": nwords, "Words/s": "%.0f" % (nwords / (end - begin)), "TOK": "%.2f" % scorer.token_acc, "POS": "%.2f" % scorer.tags_acc, "UAS": "%.2f" % scorer.uas, "LAS": "%.2f" % scorer.las, "NER P": "%.2f" % scorer.ents_p, "NER R": "%.2f" % scorer.ents_r, "NER F": "%.2f" % scorer.ents_f, } msg.table(results, title="Results") if displacy_path: docs, golds = zip(*dev_docs) render_deps = "parser" in nlp.meta.get("pipeline", []) render_ents = "ner" in nlp.meta.get("pipeline", []) render_parses( docs, displacy_path, model_name=model, limit=displacy_limit, deps=render_deps, ents=render_ents, ) msg.good("Generated {} parses as HTML".format(displacy_limit), displacy_path) if return_scores: return scorer.scores def render_parses(docs, output_path, model_name="", limit=250, deps=True, ents=True): docs[0].user_data["title"] = model_name if ents: html = displacy.render(docs[:limit], style="ent", page=True) with (output_path / "entities.html").open("w") as file_: file_.write(html) if deps: html = displacy.render( docs[:limit], style="dep", page=True, options={"compact": True} ) with (output_path / "parses.html").open("w") as file_: file_.write(html)