""" Fill an array, context, with every _atomic_ value our features reference. We then write the _actual features_ as tuples of the atoms. The machinery that translates from the tuples to feature-extractors (which pick the values out of "context") is in features/extractor.pyx The atomic feature names are listed in a big enum, so that the feature tuples can refer to them. """ from libc.string cimport memset from itertools import combinations from ..tokens cimport TokenC from ._state cimport State from ._state cimport get_s2, get_s1, get_s0, get_n0, get_n1, get_n2 from ._state cimport get_p2, get_p1 from ._state cimport get_e0, get_e1 from ._state cimport has_head, get_left, get_right from ._state cimport count_left_kids, count_right_kids from .stateclass cimport StateClass from cymem.cymem cimport Pool cdef inline void fill_token(atom_t* context, const TokenC* token) nogil: if token is NULL: context[0] = 0 context[1] = 0 context[2] = 0 context[3] = 0 context[4] = 0 context[5] = 0 context[6] = 0 context[7] = 0 context[8] = 0 context[9] = 0 context[10] = 0 context[11] = 0 else: context[0] = token.lex.orth context[1] = token.lemma context[2] = token.tag context[3] = token.lex.cluster # We've read in the string little-endian, so now we can take & (2**n)-1 # to get the first n bits of the cluster. # e.g. s = "1110010101" # s = ''.join(reversed(s)) # first_4_bits = int(s, 2) # print first_4_bits # 5 # print "{0:b}".format(prefix).ljust(4, '0') # 1110 # What we're doing here is picking a number where all bits are 1, e.g. # 15 is 1111, 63 is 111111 and doing bitwise AND, so getting all bits in # the source that are set to 1. context[4] = token.lex.cluster & 15 context[5] = token.lex.cluster & 63 context[6] = token.dep if has_head(token) else 0 context[7] = token.lex.prefix context[8] = token.lex.suffix context[9] = token.lex.shape context[10] = token.ent_iob context[11] = token.ent_type cdef int fill_context(atom_t* ctxt, StateClass st) except -1: # Take care to fill every element of context! # We could memset, but this makes it very easy to have broken features that # make almost no impact on accuracy. If instead they're unset, the impact # tends to be dramatic, so we get an obvious regression to fix... fill_token(&ctxt[S2w], st.S_(2)) fill_token(&ctxt[S1w], st.S_(1)) fill_token(&ctxt[S1rw], st.R_(st.S(1), 1)) fill_token(&ctxt[S0lw], st.L_(st.S(0), 1)) fill_token(&ctxt[S0l2w], st.L_(st.S(0), 2)) fill_token(&ctxt[S0w], st.S_(0)) fill_token(&ctxt[S0r2w], st.R_(st.S(0), 2)) fill_token(&ctxt[S0rw], st.R_(st.S(0), 1)) fill_token(&ctxt[N0lw], st.L_(st.B(0), 1)) fill_token(&ctxt[N0l2w], st.L_(st.B(0), 2)) fill_token(&ctxt[N0w], st.B_(0)) fill_token(&ctxt[N1w], st.B_(1)) fill_token(&ctxt[N2w], st.B_(2)) fill_token(&ctxt[P1w], st.safe_get(st.B(0)-1)) fill_token(&ctxt[P2w], st.safe_get(st.B(0)-2)) # TODO fill_token(&ctxt[E0w], st.E_(0)) fill_token(&ctxt[E1w], st.E_(1)) if st.stack_depth() >= 1 and not st.eol(): ctxt[dist] = min(st.S(0) - st.B(0), 5) # TODO: This is backwards!! else: ctxt[dist] = 0 ctxt[N0lv] = min(st.n_L(st.B(0)), 5) ctxt[S0lv] = min(st.n_L(st.S(0)), 5) ctxt[S0rv] = min(st.n_R(st.S(0)), 5) ctxt[S1lv] = min(st.n_L(st.S(1)), 5) ctxt[S1rv] = min(st.n_R(st.S(1)), 5) ctxt[S0_has_head] = 0 ctxt[S1_has_head] = 0 ctxt[S2_has_head] = 0 if st.stack_depth() >= 1: ctxt[S0_has_head] = st.has_head(st.S(0)) + 1 if st.stack_depth() >= 2: ctxt[S1_has_head] = st.has_head(st.S(1)) + 1 if st.stack_depth() >= 3: ctxt[S2_has_head] = st.has_head(st.S(2)) + 1 ner = ( (N0W,), (P1W,), (N1W,), (P2W,), (N2W,), (P1W, N0W,), (N0W, N1W), (N0_prefix,), (N0_suffix,), (P1_shape,), (N0_shape,), (N1_shape,), (P1_shape, N0_shape,), (N0_shape, P1_shape,), (P1_shape, N0_shape, N1_shape), (N2_shape,), (P2_shape,), #(P2_norm, P1_norm, W_norm), #(P1_norm, W_norm, N1_norm), #(W_norm, N1_norm, N2_norm) (P2p,), (P1p,), (N0p,), (N1p,), (N2p,), (P1p, N0p), (N0p, N1p), (P2p, P1p, N0p), (P1p, N0p, N1p), (N0p, N1p, N2p), (P2c,), (P1c,), (N0c,), (N1c,), (N2c,), (P1c, N0c), (N0c, N1c), (E0W,), (E0c,), (E0p,), (E0W, N0W), (E0c, N0W), (E0p, N0W), (E0p, P1p, N0p), (E0c, P1c, N0c), (E0w, P1c), (E0p, P1p), (E0c, P1c), (E0p, E1p), (E0c, P1p), (E1W,), (E1c,), (E1p,), (E0W, E1W), (E0W, E1p,), (E0p, E1W,), (E0p, E1W), (P1_ne_iob,), (P1_ne_iob, P1_ne_type), (N0w, P1_ne_iob, P1_ne_type), (N0_shape,), (N1_shape,), (N2_shape,), (P1_shape,), (P2_shape,), (N0_prefix,), (N0_suffix,), (P1_ne_iob,), (P2_ne_iob,), (P1_ne_iob, P2_ne_iob), (P1_ne_iob, P1_ne_type), (P2_ne_iob, P2_ne_type), (N0w, P1_ne_iob, P1_ne_type), (N0w, N1w), ) unigrams = ( (S2W, S2p), (S2c6, S2p), (S1W, S1p), (S1c6, S1p), (S0W, S0p), (S0c6, S0p), (N0W, N0p), (N0p,), (N0c,), (N0c6, N0p), (N0L,), (N1W, N1p), (N1c6, N1p), (N2W, N2p), (N2c6, N2p), (S0r2W, S0r2p), (S0r2c6, S0r2p), (S0r2L,), (S0rW, S0rp), (S0rc6, S0rp), (S0rL,), (S0l2W, S0l2p), (S0l2c6, S0l2p), (S0l2L,), (S0lW, S0lp), (S0lc6, S0lp), (S0lL,), (N0l2W, N0l2p), (N0l2c6, N0l2p), (N0l2L,), (N0lW, N0lp), (N0lc6, N0lp), (N0lL,), ) s0_n0 = ( (S0W, S0p, N0W, N0p), (S0c, S0p, N0c, N0p), (S0c6, S0p, N0c6, N0p), (S0c4, S0p, N0c4, N0p), (S0p, N0p), (S0W, N0p), (S0p, N0W), (S0W, N0c), (S0c, N0W), (S0p, N0c), (S0c, N0p), (S0W, S0rp, N0p), (S0p, S0rp, N0p), (S0p, N0lp, N0W), (S0p, N0lp, N0p), ) s1_n0 = ( (S1p, N0p), (S1c, N0c), (S1c, N0p), (S1p, N0c), (S1W, S1p, N0p), (S1p, N0W, N0p), (S1c6, S1p, N0c6, N0p), ) s0_n1 = ( (S0p, N1p), (S0c, N1c), (S0c, N1p), (S0p, N1c), (S0W, S0p, N1p), (S0p, N1W, N1p), (S0c6, S0p, N1c6, N1p), ) n0_n1 = ( (N0W, N0p, N1W, N1p), (N0W, N0p, N1p), (N0p, N1W, N1p), (N0c, N0p, N1c, N1p), (N0c6, N0p, N1c6, N1p), (N0c, N1c), (N0p, N1c), ) tree_shape = ( (dist,), (S0p, S0_has_head, S1_has_head, S2_has_head), (S0p, S0lv, S0rv), (N0p, N0lv), ) trigrams = ( (N0p, N1p, N2p), (S0p, S0lp, S0l2p), (S0p, S0rp, S0r2p), (S0p, S1p, S2p), (S1p, S0p, N0p), (S0p, S0lp, N0p), (S0p, N0p, N0lp), (N0p, N0lp, N0l2p), (S0W, S0p, S0rL, S0r2L), (S0p, S0rL, S0r2L), (S0W, S0p, S0lL, S0l2L), (S0p, S0lL, S0l2L), (N0W, N0p, N0lL, N0l2L), (N0p, N0lL, N0l2L), )