from typing import List, Dict from ...pipeline import Lemmatizer from ...tokens import Token class PolishLemmatizer(Lemmatizer): # This lemmatizer implements lookup lemmatization based on the Morfeusz # dictionary (morfeusz.sgjp.pl/en) by Institute of Computer Science PAS. # It utilizes some prefix based improvements for verb and adjectives # lemmatization, as well as case-sensitive lemmatization for nouns. @classmethod def get_lookups_config(cls, mode: str) -> Dict: if mode == "lookup": return { "required_tables": [ "lemma_lookup_adj", "lemma_lookup_adp", "lemma_lookup_adv", "lemma_lookup_aux", "lemma_lookup_noun", "lemma_lookup_num", "lemma_lookup_part", "lemma_lookup_pron", "lemma_lookup_verb", ] } else: return super().get_lookups_config(mode) def lookup_lemmatize(self, token: Token) -> List[str]: string = token.text univ_pos = token.pos_ morphology = token.morph.to_dict() lookup_pos = univ_pos.lower() if univ_pos == "PROPN": lookup_pos = "noun" lookup_table = self.lookups.get_table("lemma_lookup_" + lookup_pos, {}) if univ_pos == "NOUN": return self.lemmatize_noun(string, morphology, lookup_table) if univ_pos != "PROPN": string = string.lower() if univ_pos == "ADJ": return self.lemmatize_adj(string, morphology, lookup_table) elif univ_pos == "VERB": return self.lemmatize_verb(string, morphology, lookup_table) return [lookup_table.get(string, string.lower())] def lemmatize_adj( self, string: str, morphology: dict, lookup_table: Dict[str, str] ) -> List[str]: # this method utilizes different procedures for adjectives # with 'nie' and 'naj' prefixes if string[:3] == "nie": search_string = string[3:] if search_string[:3] == "naj": naj_search_string = search_string[3:] if naj_search_string in lookup_table: return [lookup_table[naj_search_string]] if search_string in lookup_table: return [lookup_table[search_string]] if string[:3] == "naj": naj_search_string = string[3:] if naj_search_string in lookup_table: return [lookup_table[naj_search_string]] return [lookup_table.get(string, string)] def lemmatize_verb( self, string: str, morphology: dict, lookup_table: Dict[str, str] ) -> List[str]: # this method utilizes a different procedure for verbs # with 'nie' prefix if string[:3] == "nie": search_string = string[3:] if search_string in lookup_table: return [lookup_table[search_string]] return [lookup_table.get(string, string)] def lemmatize_noun( self, string: str, morphology: dict, lookup_table: Dict[str, str] ) -> List[str]: # this method is case-sensitive, in order to work # for incorrectly tagged proper names if string != string.lower(): if string.lower() in lookup_table: return [lookup_table[string.lower()]] elif string in lookup_table: return [lookup_table[string]] return [string.lower()] return [lookup_table.get(string, string)]