""" MALT-style dependency parser """ from __future__ import unicode_literals cimport cython from libc.stdint cimport uint32_t, uint64_t import random import os.path from os import path import shutil import json from cymem.cymem cimport Pool, Address from murmurhash.mrmr cimport hash64 from thinc.typedefs cimport weight_t, class_t, feat_t, atom_t from util import Config from thinc.features cimport Extractor from thinc.features cimport Feature from thinc.features cimport count_feats from thinc.learner cimport LinearModel from ..tokens cimport Tokens, TokenC from .arc_eager cimport TransitionSystem, Transition from .transition_system import OracleError from ._state cimport init_state, State, is_final, get_idx, get_s0, get_s1, get_n0, get_n1 from .conll cimport GoldParse from . import _parse_features from ._parse_features cimport fill_context, CONTEXT_SIZE from ._ner_features cimport _ner_features DEBUG = False def set_debug(val): global DEBUG DEBUG = val cdef unicode print_state(State* s, list words): words = list(words) + ['EOL'] top = words[s.stack[0]] + '_%d' % s.sent[s.stack[0]].head second = words[s.stack[-1]] + '_%d' % s.sent[s.stack[-1]].head third = words[s.stack[-2]] + '_%d' % s.sent[s.stack[-2]].head n0 = words[s.i] n1 = words[s.i + 1] return ' '.join((str(s.stack_len), third, second, top, '|', n0, n1)) def get_templates(name): pf = _parse_features if name == 'zhang': return pf.arc_eager elif name == 'ner': return _ner_features.basic else: return (pf.unigrams + pf.s0_n0 + pf.s1_n0 + pf.s0_n1 + pf.n0_n1 + \ pf.tree_shape + pf.trigrams) cdef class GreedyParser: def __init__(self, model_dir, transition_system): assert os.path.exists(model_dir) and os.path.isdir(model_dir) self.cfg = Config.read(model_dir, 'config') self.moves = transition_system(self.cfg.labels) templates = get_templates(self.cfg.features) self.model = Model(self.moves.n_moves, templates, model_dir) def __call__(self, Tokens tokens): if tokens.length == 0: return 0 cdef atom_t[CONTEXT_SIZE] context cdef int n_feats cdef Pool mem = Pool() cdef State* state = init_state(mem, tokens.data, tokens.length) cdef Transition guess while not is_final(state): fill_context(context, state) scores = self.model.score(context) guess = self.moves.best_valid(scores, state) guess.do(&guess, state) tokens.set_parse(state.sent, self.moves.label_ids) return 0 def train(self, Tokens tokens, GoldParse gold, force_gold=False): cdef: int n_feats int cost const Feature* feats const weight_t* scores Transition guess Transition best atom_t[CONTEXT_SIZE] context self.moves.preprocess_gold(gold) cdef Pool mem = Pool() cdef State* state = init_state(mem, tokens.data, tokens.length) while not is_final(state): fill_context(context, state) scores = self.model.score(context) guess = self.moves.best_valid(scores, state) best = self.moves.best_gold(scores, state, gold) cost = guess.get_cost(&guess, state, gold) self.model.update(context, guess.clas, best.clas, cost) if force_gold: best.do(&best, state) else: guess.do(&guess, state) n_corr = gold.heads_correct(state.sent, score_punct=True) if force_gold and n_corr != tokens.length: raise OracleError return n_corr