#!/usr/bin/env python from __future__ import division from __future__ import unicode_literals import os from os import path import shutil import codecs import random import time import gzip import plac import cProfile import pstats import spacy.util from spacy.en import English from spacy.en.pos import POS_TEMPLATES, POS_TAGS, setup_model_dir from spacy.syntax.parser import GreedyParser from spacy.syntax.parser import OracleError from spacy.syntax.util import Config from spacy.syntax.conll import read_docparse_file from spacy.syntax.conll import GoldParse def is_punct_label(label): return label == 'P' or label.lower() == 'punct' def read_tokenized_gold(file_): """Read a standard CoNLL/MALT-style format""" sents = [] for sent_str in file_.read().strip().split('\n\n'): ids = [] words = [] heads = [] labels = [] tags = [] for i, line in enumerate(sent_str.split('\n')): id_, word, pos_string, head_idx, label = _parse_line(line) words.append(word) if head_idx == -1: head_idx = i ids.append(id_) heads.append(head_idx) labels.append(label) tags.append(pos_string) text = ' '.join(words) sents.append((text, [words], ids, words, tags, heads, labels)) return sents def read_docparse_gold(file_): paragraphs = [] for sent_str in file_.read().strip().split('\n\n'): if not sent_str.strip(): continue words = [] heads = [] labels = [] tags = [] ids = [] lines = sent_str.strip().split('\n') raw_text = lines.pop(0).strip() tok_text = lines.pop(0).strip() for i, line in enumerate(lines): id_, word, pos_string, head_idx, label = _parse_line(line) if label == 'root': label = 'ROOT' words.append(word) if head_idx < 0: head_idx = id_ ids.append(id_) heads.append(head_idx) labels.append(label) tags.append(pos_string) tokenized = [sent_str.replace('', ' ').split(' ') for sent_str in tok_text.split('')] paragraphs.append((raw_text, tokenized, ids, words, tags, heads, labels)) return paragraphs def _map_indices_to_tokens(ids, heads): mapped = [] for head in heads: if head not in ids: mapped.append(None) else: mapped.append(ids.index(head)) return mapped def _parse_line(line): pieces = line.split() if len(pieces) == 4: return 0, pieces[0], pieces[1], int(pieces[2]) - 1, pieces[3] else: id_ = int(pieces[0]) word = pieces[1] pos = pieces[3] head_idx = int(pieces[6]) label = pieces[7] return id_, word, pos, head_idx, label loss = 0 def _align_annotations_to_non_gold_tokens(tokens, words, annot): global loss tags = [] heads = [] labels = [] orig_words = list(words) missed = [] for token in tokens: while annot and token.idx > annot[0][0]: miss_id, miss_tag, miss_head, miss_label = annot.pop(0) miss_w = words.pop(0) if not is_punct_label(miss_label): missed.append(miss_w) loss += 1 if not annot: tags.append(None) heads.append(None) labels.append(None) continue id_, tag, head, label = annot[0] if token.idx == id_: tags.append(tag) heads.append(head) labels.append(label) annot.pop(0) words.pop(0) elif token.idx < id_: tags.append(None) heads.append(None) labels.append(None) else: raise StandardError #if missed: # print orig_words # print missed # for t in tokens: # print t.idx, t.orth_ return loss, tags, heads, labels def iter_data(paragraphs, tokenizer, gold_preproc=False): for raw, tokenized, ids, words, tags, heads, labels in paragraphs: if not gold_preproc: tokens = tokenizer(raw) loss, tags, heads, labels = _align_annotations_to_non_gold_tokens( tokens, list(words), zip(ids, tags, heads, labels)) ids = [t.idx for t in tokens] heads = _map_indices_to_tokens(ids, heads) yield tokens, tags, heads, labels else: assert len(words) == len(heads) for words in tokenized: sent_ids = ids[:len(words)] sent_tags = tags[:len(words)] sent_heads = heads[:len(words)] sent_labels = labels[:len(words)] sent_heads = _map_indices_to_tokens(sent_ids, sent_heads) tokens = tokenizer.tokens_from_list(words) yield tokens, sent_tags, sent_heads, sent_labels ids = ids[len(words):] tags = tags[len(words):] heads = heads[len(words):] labels = labels[len(words):] def get_labels(sents): left_labels = set() right_labels = set() for raw, tokenized, ids, words, tags, heads, labels in sents: for child, (head, label) in enumerate(zip(heads, labels)): if head > child: left_labels.add(label) elif head < child: right_labels.add(label) return list(sorted(left_labels)), list(sorted(right_labels)) def train(Language, train_loc, model_dir, n_iter=15, feat_set=u'basic', seed=0, gold_preproc=False, force_gold=False, n_sents=0): print "Setup model dir" dep_model_dir = path.join(model_dir, 'deps') pos_model_dir = path.join(model_dir, 'pos') ner_model_dir = path.join(model_dir, 'ner') if path.exists(dep_model_dir): shutil.rmtree(dep_model_dir) if path.exists(pos_model_dir): shutil.rmtree(pos_model_dir) if path.exists(ner_model_dir): shutil.rmtree(ner_model_dir) os.mkdir(dep_model_dir) os.mkdir(pos_model_dir) os.mkdir(ner_model_dir) setup_model_dir(sorted(POS_TAGS.keys()), POS_TAGS, POS_TEMPLATES, pos_model_dir) gold_tuples = read_docparse_file(train_loc) Config.write(dep_model_dir, 'config', features=feat_set, seed=seed, labels=Language.ParserTransitionSystem.get_labels(gold_tuples)) Config.write(ner_model_dir, 'config', features='ner', seed=seed, labels=Language.EntityTransitionSystem.get_labels(gold_tuples)) nlp = Language() for itn in range(n_iter): dep_corr = 0 pos_corr = 0 ent_corr = 0 n_tokens = 0 for raw_text, segmented_text, annot_tuples in gold_tuples: if gold_preproc: sents = [nlp.tokenizer.tokens_from_list(s) for s in segmented_text] else: sents = [nlp.tokenizer(raw_text)] for tokens in sents: gold = GoldParse(tokens, annot_tuples) nlp.tagger(tokens) #ent_corr += nlp.entity.train(tokens, gold, force_gold=force_gold) dep_corr += nlp.parser.train(tokens, gold, force_gold=force_gold) pos_corr += nlp.tagger.train(tokens, gold.tags) n_tokens += len(tokens) acc = float(dep_corr) / n_tokens pos_acc = float(pos_corr) / n_tokens print '%d: ' % itn, '%.3f' % acc, '%.3f' % pos_acc random.shuffle(gold_tuples) nlp.parser.model.end_training() nlp.tagger.model.end_training() return acc def evaluate(Language, dev_loc, model_dir, gold_preproc=False): global loss nlp = Language() uas_corr = 0 las_corr = 0 pos_corr = 0 n_tokens = 0 total = 0 skipped = 0 loss = 0 gold_tuples = read_docparse_file(train_loc) for raw_text, segmented_text, annot_tuples in gold_tuples: if gold_preproc: tokens = nlp.tokenizer.tokens_from_list(gold_sent.words) nlp.tagger(tokens) nlp.parser(tokens) gold_sent.map_heads(nlp.parser.moves.label_ids) else: tokens = nlp(gold_sent.raw_text) loss += gold_sent.align_to_tokens(tokens, nlp.parser.moves.label_ids) for i, token in enumerate(tokens): pos_corr += token.tag_ == gold_sent.tags[i] n_tokens += 1 if gold_sent.heads[i] is None: skipped += 1 continue if gold_sent.labels[i] != 'P': n_corr += gold_sent.is_correct(i, token.head.i) total += 1 print loss, skipped, (loss+skipped + total) print pos_corr / n_tokens return float(n_corr) / (total + loss) @plac.annotations( train_loc=("Training file location",), dev_loc=("Dev. file location",), model_dir=("Location of output model directory",), n_sents=("Number of training sentences", "option", "n", int) ) def main(train_loc, dev_loc, model_dir, n_sents=0): train(English, train_loc, model_dir, gold_preproc=False, force_gold=False, n_sents=n_sents) print evaluate(English, dev_loc, model_dir, gold_preproc=False) if __name__ == '__main__': plac.call(main)