#!/usr/bin/env python from __future__ import division from __future__ import unicode_literals import os from os import path import shutil import codecs import random import plac import cProfile import pstats import re import spacy.util from spacy.en import English from spacy.en.pos import POS_TEMPLATES, POS_TAGS, setup_model_dir from spacy.syntax.util import Config from spacy.gold import read_json_file from spacy.gold import GoldParse from spacy.scorer import Scorer def add_noise(c, noise_level): if random.random() >= noise_level: return c elif c == ' ': return '\n' elif c == '\n': return ' ' elif c in ['.', "'", "!", "?"]: return '' else: return c.lower() def score_model(scorer, nlp, raw_text, annot_tuples, train_tags=None): if raw_text is None: tokens = nlp.tokenizer.tokens_from_list(annot_tuples[1]) else: tokens = nlp.tokenizer(raw_text) if train_tags is not None: key = hash(tokens.string) nlp.tagger.tag_from_strings(tokens, train_tags[key]) else: nlp.tagger(tokens) nlp.entity(tokens) nlp.parser(tokens) gold = GoldParse(tokens, annot_tuples) scorer.score(tokens, gold, verbose=False) def _merge_sents(sents): m_deps = [[], [], [], [], [], []] m_brackets = [] i = 0 for (ids, words, tags, heads, labels, ner), brackets in sents: m_deps[0].extend(id_ + i for id_ in ids) m_deps[1].extend(words) m_deps[2].extend(tags) m_deps[3].extend(head + i for head in heads) m_deps[4].extend(labels) m_deps[5].extend(ner) m_brackets.extend((b['first'] + i, b['last'] + i, b['label']) for b in brackets) i += len(ids) return [(m_deps, m_brackets)] def get_train_tags(Language, model_dir, docs, gold_preproc): taggings = {} for train_part, test_part in get_partitions(docs, 5): nlp = _train_tagger(Language, model_dir, train_part, gold_preproc) for tokens in _tag_partition(nlp, test_part): taggings[hash(tokens.string)] = [w.tag_ for w in tokens] return taggings def get_partitions(docs, n_parts): random.shuffle(docs) n_test = len(docs) / n_parts n_train = len(docs) - n_test for part in range(n_parts): start = int(part * n_test) end = int(start + n_test) yield docs[:start] + docs[end:], docs[start:end] def _train_tagger(Language, model_dir, docs, gold_preproc=False, n_iter=5): pos_model_dir = path.join(model_dir, 'pos') if path.exists(pos_model_dir): shutil.rmtree(pos_model_dir) os.mkdir(pos_model_dir) setup_model_dir(sorted(POS_TAGS.keys()), POS_TAGS, POS_TEMPLATES, pos_model_dir) nlp = Language(data_dir=model_dir) print "Itn.\tTag %" for itn in range(n_iter): scorer = Scorer() correct = 0 total = 0 for raw_text, sents in docs: if gold_preproc: raw_text = None else: sents = _merge_sents(sents) for annot_tuples, ctnt in sents: if raw_text is None: tokens = nlp.tokenizer.tokens_from_list(annot_tuples[1]) else: tokens = nlp.tokenizer(raw_text) gold = GoldParse(tokens, annot_tuples) correct += nlp.tagger.train(tokens, gold.tags) total += len(tokens) random.shuffle(docs) print itn, '%.3f' % (correct / total) nlp.tagger.model.end_training() nlp.vocab.strings.dump(path.join(model_dir, 'vocab', 'strings.txt')) return nlp def _tag_partition(nlp, docs, gold_preproc=False): for raw_text, sents in docs: if gold_preproc: raw_text = None else: sents = _merge_sents(sents) for annot_tuples, _ in sents: if raw_text is None: tokens = nlp.tokenizer.tokens_from_list(annot_tuples[1]) else: tokens = nlp.tokenizer(raw_text) nlp.tagger(tokens) yield tokens def train(Language, gold_tuples, model_dir, n_iter=15, feat_set=u'basic', seed=0, gold_preproc=False, n_sents=0, corruption_level=0, train_tags=None, beam_width=1): dep_model_dir = path.join(model_dir, 'deps') pos_model_dir = path.join(model_dir, 'pos') ner_model_dir = path.join(model_dir, 'ner') if path.exists(dep_model_dir): shutil.rmtree(dep_model_dir) if path.exists(pos_model_dir): shutil.rmtree(pos_model_dir) if path.exists(ner_model_dir): shutil.rmtree(ner_model_dir) os.mkdir(dep_model_dir) os.mkdir(pos_model_dir) os.mkdir(ner_model_dir) setup_model_dir(sorted(POS_TAGS.keys()), POS_TAGS, POS_TEMPLATES, pos_model_dir) Config.write(dep_model_dir, 'config', features=feat_set, seed=seed, labels=Language.ParserTransitionSystem.get_labels(gold_tuples), beam_width=beam_width) Config.write(ner_model_dir, 'config', features='ner', seed=seed, labels=Language.EntityTransitionSystem.get_labels(gold_tuples), beam_width=1) if n_sents > 0: gold_tuples = gold_tuples[:n_sents] nlp = Language(data_dir=model_dir) print "Itn.\tP.Loss\tUAS\tNER F.\tTag %\tToken %" for itn in range(n_iter): scorer = Scorer() loss = 0 for raw_text, sents in gold_tuples: if gold_preproc: raw_text = None else: sents = _merge_sents(sents) for annot_tuples, ctnt in sents: if len(annot_tuples[1]) == 1: continue score_model(scorer, nlp, raw_text, annot_tuples, train_tags) if raw_text is None: tokens = nlp.tokenizer.tokens_from_list(annot_tuples[1]) else: tokens = nlp.tokenizer(raw_text) if train_tags is not None: sent_id = hash(tokens.string) nlp.tagger.tag_from_strings(tokens, train_tags[sent_id]) else: nlp.tagger(tokens) gold = GoldParse(tokens, annot_tuples, make_projective=True) loss += nlp.parser.train(tokens, gold) nlp.entity.train(tokens, gold) nlp.tagger.train(tokens, gold.tags) random.shuffle(gold_tuples) print '%d:\t%d\t%.3f\t%.3f\t%.3f\t%.3f' % (itn, loss, scorer.uas, scorer.ents_f, scorer.tags_acc, scorer.token_acc) nlp.parser.model.end_training() nlp.entity.model.end_training() nlp.tagger.model.end_training() nlp.vocab.strings.dump(path.join(model_dir, 'vocab', 'strings.txt')) def evaluate(Language, gold_tuples, model_dir, gold_preproc=False, verbose=False): nlp = Language(data_dir=model_dir) scorer = Scorer() for raw_text, sents in gold_tuples: if gold_preproc: raw_text = None else: sents = _merge_sents(sents) for annot_tuples, brackets in sents: if raw_text is None: tokens = nlp.tokenizer.tokens_from_list(annot_tuples[1]) nlp.tagger(tokens) nlp.entity(tokens) nlp.parser(tokens) else: tokens = nlp(raw_text, merge_mwes=False) gold = GoldParse(tokens, annot_tuples) scorer.score(tokens, gold, verbose=verbose) return scorer def write_parses(Language, dev_loc, model_dir, out_loc): nlp = Language() gold_tuples = read_docparse_file(dev_loc) scorer = Scorer() out_file = codecs.open(out_loc, 'w', 'utf8') for raw_text, segmented_text, annot_tuples in gold_tuples: tokens = nlp(raw_text) for t in tokens: out_file.write( '%s\t%s\t%s\t%s\n' % (t.orth_, t.tag_, t.head.orth_, t.dep_) ) return scorer @plac.annotations( train_loc=("Location of training file or directory"), dev_loc=("Location of development file or directory"), corruption_level=("Amount of noise to add to training data", "option", "c", float), gold_preproc=("Use gold-standard sentence boundaries in training?", "flag", "g", bool), model_dir=("Location of output model directory",), out_loc=("Out location", "option", "o", str), n_sents=("Number of training sentences", "option", "n", int), n_iter=("Number of training iterations", "option", "i", int), beam_width=("Number of candidates to maintain in the beam", "option", "k", int), verbose=("Verbose error reporting", "flag", "v", bool), debug=("Debug mode", "flag", "d", bool) ) def main(train_loc, dev_loc, model_dir, n_sents=0, n_iter=15, out_loc="", verbose=False, debug=False, corruption_level=0.0, gold_preproc=False, beam_width=1): gold_train = list(read_json_file(train_loc)) #taggings = get_train_tags(English, model_dir, gold_train, gold_preproc) taggings = None train(English, gold_train, model_dir, feat_set='basic' if not debug else 'debug', gold_preproc=gold_preproc, n_sents=n_sents, corruption_level=corruption_level, n_iter=n_iter, train_tags=taggings, beam_width=beam_width) if out_loc: write_parses(English, dev_loc, model_dir, out_loc) scorer = evaluate(English, list(read_json_file(dev_loc)), model_dir, gold_preproc=gold_preproc, verbose=verbose) print 'TOK', 100-scorer.token_acc print 'POS', scorer.tags_acc print 'UAS', scorer.uas print 'LAS', scorer.las print 'NER P', scorer.ents_p print 'NER R', scorer.ents_r print 'NER F', scorer.ents_f if __name__ == '__main__': plac.call(main)