//- 💫 DOCS > API > LANGUAGE include ../_includes/_mixins p | Usually you'll load this once per process as #[code nlp] and pass the | instance around your application. The #[code Language] class is created | when you call #[+api("spacy#load") #[code spacy.load()]] and contains | the shared vocabulary and #[+a("/usage/adding-languages") language data], | optional model data loaded from a #[+a("/models") model package] or | a path, and a #[+a("/usage/processing-pipelines") processing pipeline] | containing components like the tagger or parser that are called on a | document in order. You can also add your own processing pipeline | components that take a #[code Doc] object, modify it and return it. +h(2, "init") Language.__init__ +tag method p Initialise a #[code Language] object. +aside-code("Example"). from spacy.vocab import Vocab from spacy.language import Language nlp = Language(Vocab()) from spacy.lang.en import English nlp = English() +table(["Name", "Type", "Description"]) +row +cell #[code vocab] +cell #[code Vocab] +cell | A #[code Vocab] object. If #[code True], a vocab is created via | #[code Language.Defaults.create_vocab]. +row +cell #[code make_doc] +cell callable +cell | A function that takes text and returns a #[code Doc] object. | Usually a #[code Tokenizer]. +row +cell #[code meta] +cell dict +cell | Custom meta data for the #[code Language] class. Is written to by | models to add model meta data. +row("foot") +cell returns +cell #[code Language] +cell The newly constructed object. +h(2, "call") Language.__call__ +tag method p | Apply the pipeline to some text. The text can span multiple sentences, | and can contain arbtrary whitespace. Alignment into the original string | is preserved. +aside-code("Example"). doc = nlp(u'An example sentence. Another sentence.') assert (doc[0].text, doc[0].head.tag_) == ('An', 'NN') +table(["Name", "Type", "Description"]) +row +cell #[code text] +cell unicode +cell The text to be processed. +row +cell #[code disable] +cell list +cell | Names of pipeline components to | #[+a("/usage/processing-pipelines#disabling") disable]. +row("foot") +cell returns +cell #[code Doc] +cell A container for accessing the annotations. +infobox("Deprecation note", "⚠️") .o-block | Pipeline components to prevent from being loaded can now be added as | a list to #[code disable], instead of specifying one keyword argument | per component. +code-new doc = nlp(u"I don't want parsed", disable=['parser']) +code-old doc = nlp(u"I don't want parsed", parse=False) +h(2, "pipe") Language.pipe +tag method p | Process texts as a stream, and yield #[code Doc] objects in order. | Supports GIL-free multi-threading. +aside-code("Example"). texts = [u'One document.', u'...', u'Lots of documents'] for doc in nlp.pipe(texts, batch_size=50, n_threads=4): assert doc.is_parsed +table(["Name", "Type", "Description"]) +row +cell #[code texts] +cell - +cell A sequence of unicode objects. +row +cell #[code as_tuples] +cell bool +cell | If set to #[code True], inputs should be a sequence of | #[code (text, context)] tuples. Output will then be a sequence of | #[code (doc, context)] tuples. Defaults to #[code False]. +row +cell #[code n_threads] +cell int +cell | The number of worker threads to use. If #[code -1], OpenMP will | decide how many to use at run time. Default is #[code 2]. +row +cell #[code batch_size] +cell int +cell The number of texts to buffer. +row +cell #[code disable] +cell list +cell | Names of pipeline components to | #[+a("/usage/processing-pipelines#disabling") disable]. +row("foot") +cell yields +cell #[code Doc] +cell Documents in the order of the original text. +h(2, "update") Language.update +tag method p Update the models in the pipeline. +aside-code("Example"). for raw_text, entity_offsets in train_data: doc = nlp.make_doc(raw_text) gold = GoldParse(doc, entities=entity_offsets) nlp.update([doc], [gold], drop=0.5, sgd=optimizer) +table(["Name", "Type", "Description"]) +row +cell #[code docs] +cell iterable +cell A batch of #[code Doc] objects. +row +cell #[code golds] +cell iterable +cell A batch of #[code GoldParse] objects. +row +cell #[code drop] +cell float +cell The dropout rate. +row +cell #[code sgd] +cell callable +cell An optimizer. +row("foot") +cell returns +cell dict +cell Results from the update. +h(2, "begin_training") Language.begin_training +tag method p | Allocate models, pre-process training data and acquire an optimizer. +aside-code("Example"). optimizer = nlp.begin_training(gold_tuples) +table(["Name", "Type", "Description"]) +row +cell #[code gold_tuples] +cell iterable +cell Gold-standard training data. +row +cell #[code **cfg] +cell - +cell Config parameters. +row("foot") +cell yields +cell tuple +cell An optimizer. +h(2, "use_params") Language.use_params +tag contextmanager +tag method p | Replace weights of models in the pipeline with those provided in the | params dictionary. Can be used as a contextmanager, in which case, models | go back to their original weights after the block. +aside-code("Example"). with nlp.use_params(optimizer.averages): nlp.to_disk('/tmp/checkpoint') +table(["Name", "Type", "Description"]) +row +cell #[code params] +cell dict +cell A dictionary of parameters keyed by model ID. +row +cell #[code **cfg] +cell - +cell Config parameters. +h(2, "preprocess_gold") Language.preprocess_gold p | Can be called before training to pre-process gold data. By default, it | handles nonprojectivity and adds missing tags to the tag map. +table(["Name", "Type", "Description"]) +row +cell #[code docs_golds] +cell iterable +cell Tuples of #[code Doc] and #[code GoldParse] objects. +row("foot") +cell yields +cell tuple +cell Tuples of #[code Doc] and #[code GoldParse] objects. +h(2, "create_pipe") Language.create_pipe +tag method +tag-new(2) p Create a pipeline component from a factory. +aside-code("Example"). parser = nlp.create_pipe('parser') nlp.add_pipe(parser) +table(["Name", "Type", "Description"]) +row +cell #[code name] +cell unicode +cell | Factory name to look up in | #[+api("language#class-attributes") #[code Language.factories]]. +row +cell #[code config] +cell dict +cell Configuration parameters to initialise component. +row("foot") +cell returns +cell callable +cell The pipeline component. +h(2, "add_pipe") Language.add_pipe +tag method +tag-new(2) p | Add a component to the processing pipeline. Valid components are | callables that take a #[code Doc] object, modify it and return it. Only | one of #[code before], #[code after], #[code first] or #[code last] can | be set. Default behaviour is #[code last=True]. +aside-code("Example"). def component(doc): # modify Doc and return it return doc nlp.add_pipe(component, before='ner') nlp.add_pipe(component, name='custom_name', last=True) +table(["Name", "Type", "Description"]) +row +cell #[code component] +cell callable +cell The pipeline component. +row +cell #[code name] +cell unicode +cell | Name of pipeline component. Overwrites existing | #[code component.name] attribute if available. If no #[code name] | is set and the component exposes no name attribute, | #[code component.__name__] is used. An error is raised if the | name already exists in the pipeline. +row +cell #[code before] +cell unicode +cell Component name to insert component directly before. +row +cell #[code after] +cell unicode +cell Component name to insert component directly after: +row +cell #[code first] +cell bool +cell Insert component first / not first in the pipeline. +row +cell #[code last] +cell bool +cell Insert component last / not last in the pipeline. +h(2, "has_pipe") Language.has_pipe +tag method +tag-new(2) p | Check whether a component is present in the pipeline. Equivalent to | #[code name in nlp.pipe_names]. +aside-code("Example"). nlp.add_pipe(lambda doc: doc, name='component') assert 'component' in nlp.pipe_names assert nlp.has_pipe('component') +table(["Name", "Type", "Description"]) +row +cell #[code name] +cell unicode +cell Name of the pipeline component to check. +row("foot") +cell returns +cell bool +cell Whether a component of that name exists in the pipeline. +h(2, "get_pipe") Language.get_pipe +tag method +tag-new(2) p Get a pipeline component for a given component name. +aside-code("Example"). parser = nlp.get_pipe('parser') custom_component = nlp.get_pipe('custom_component') +table(["Name", "Type", "Description"]) +row +cell #[code name] +cell unicode +cell Name of the pipeline component to get. +row("foot") +cell returns +cell callable +cell The pipeline component. +h(2, "replace_pipe") Language.replace_pipe +tag method +tag-new(2) p Replace a component in the pipeline. +aside-code("Example"). nlp.replace_pipe('parser', my_custom_parser) +table(["Name", "Type", "Description"]) +row +cell #[code name] +cell unicode +cell Name of the component to replace. +row +cell #[code component] +cell callable +cell The pipeline component to inser. +h(2, "rename_pipe") Language.rename_pipe +tag method +tag-new(2) p | Rename a component in the pipeline. Useful to create custom names for | pre-defined and pre-loaded components. To change the default name of | a component added to the pipeline, you can also use the #[code name] | argument on #[+api("language#add_pipe") #[code add_pipe]]. +aside-code("Example"). nlp.rename_pipe('parser', 'spacy_parser') +table(["Name", "Type", "Description"]) +row +cell #[code old_name] +cell unicode +cell Name of the component to rename. +row +cell #[code new_name] +cell unicode +cell New name of the component. +h(2, "remove_pipe") Language.remove_pipe +tag method +tag-new(2) p | Remove a component from the pipeline. Returns the removed component name | and component function. +aside-code("Example"). name, component = nlp.remove_pipe('parser') assert name == 'parser' +table(["Name", "Type", "Description"]) +row +cell #[code name] +cell unicode +cell Name of the component to remove. +row("foot") +cell returns +cell tuple +cell A #[code (name, component)] tuple of the removed component. +h(2, "to_disk") Language.to_disk +tag method +tag-new(2) p | Save the current state to a directory. If a model is loaded, this will | #[strong include the model]. +aside-code("Example"). nlp.to_disk('/path/to/models') +table(["Name", "Type", "Description"]) +row +cell #[code path] +cell unicode or #[code Path] +cell | A path to a directory, which will be created if it doesn't exist. | Paths may be either strings or #[code Path]-like objects. +row +cell #[code disable] +cell list +cell | Names of pipeline components to | #[+a("/usage/processing-pipelines#disabling") disable] | and prevent from being saved. +h(2, "from_disk") Language.from_disk +tag method +tag-new(2) p | Loads state from a directory. Modifies the object in place and returns | it. If the saved #[code Language] object contains a model, the | #[strong model will be loaded]. +aside-code("Example"). from spacy.language import Language nlp = Language().from_disk('/path/to/models') +table(["Name", "Type", "Description"]) +row +cell #[code path] +cell unicode or #[code Path] +cell | A path to a directory. Paths may be either strings or | #[code Path]-like objects. +row +cell #[code disable] +cell list +cell | Names of pipeline components to | #[+a("/usage/processing-pipelines#disabling") disable]. +row("foot") +cell returns +cell #[code Language] +cell The modified #[code Language] object. +infobox("Deprecation note", "⚠️") .o-block | As of spaCy v2.0, the #[code save_to_directory] method has been | renamed to #[code to_disk], to improve consistency across classes. | Pipeline components to prevent from being loaded can now be added as | a list to #[code disable], instead of specifying one keyword argument | per component. +code-new nlp = English().from_disk(disable=['tagger', 'ner']) +code-old nlp = spacy.load('en', tagger=False, entity=False) +h(2, "to_bytes") Language.to_bytes +tag method p Serialize the current state to a binary string. +aside-code("Example"). nlp_bytes = nlp.to_bytes() +table(["Name", "Type", "Description"]) +row +cell #[code disable] +cell list +cell | Names of pipeline components to | #[+a("/usage/processing-pipelines#disabling") disable] | and prevent from being serialized. +row("foot") +cell returns +cell bytes +cell The serialized form of the #[code Language] object. +h(2, "from_bytes") Language.from_bytes +tag method p Load state from a binary string. +aside-code("Example"). fron spacy.lang.en import English nlp_bytes = nlp.to_bytes() nlp2 = English() nlp2.from_bytes(nlp_bytes) +table(["Name", "Type", "Description"]) +row +cell #[code bytes_data] +cell bytes +cell The data to load from. +row +cell #[code disable] +cell list +cell | Names of pipeline components to | #[+a("/usage/processing-pipelines#disabling") disable]. +row("foot") +cell returns +cell #[code Language] +cell The #[code Language] object. +infobox("Deprecation note", "⚠️") .o-block | Pipeline components to prevent from being loaded can now be added as | a list to #[code disable], instead of specifying one keyword argument | per component. +code-new nlp = English().from_bytes(bytes, disable=['tagger', 'ner']) +code-old nlp = English().from_bytes('en', tagger=False, entity=False) +h(2, "attributes") Attributes +table(["Name", "Type", "Description"]) +row +cell #[code vocab] +cell #[code Vocab] +cell A container for the lexical types. +row +cell #[code tokenizer] +cell #[code Tokenizer] +cell The tokenizer. +row +cell #[code make_doc] +cell #[code lambda text: Doc] +cell Create a #[code Doc] object from unicode text. +row +cell #[code pipeline] +cell list +cell | List of #[code (name, component)] tuples describing the current | processing pipeline, in order. +row +cell #[code pipe_names] +tag-new(2) +cell list +cell List of pipeline component names, in order. +row +cell #[code meta] +cell dict +cell | Custom meta data for the Language class. If a model is loaded, | contains meta data of the model. +h(2, "class-attributes") Class attributes +table(["Name", "Type", "Description"]) +row +cell #[code Defaults] +cell class +cell | Settings, data and factory methods for creating the | #[code nlp] object and processing pipeline. +row +cell #[code lang] +cell unicode +cell | Two-letter language ID, i.e. | #[+a("https://en.wikipedia.org/wiki/List_of_ISO_639-1_codes") ISO code]. +row +cell #[code factories] +tag-new(2) +cell dict +cell | Factories that create pre-defined pipeline components, e.g. the | tagger, parser or entity recognizer, keyed by their component | name.