from __future__ import unicode_literals from collections import OrderedDict, defaultdict import cytoolz import ujson import numpy cimport numpy as np from .util import msgpack from .util import msgpack_numpy from thinc.api import chain from thinc.neural.util import to_categorical, copy_array from . import util from .pipe import Pipe from ._ml import Tok2Vec, build_tagger_model from ._ml import link_vectors_to_models, zero_init, flatten from ._ml import create_default_optimizer from .errors import Errors, TempErrors from .compat import json_dumps, basestring_ from .tokens.doc cimport Doc from .vocab cimport Vocab from .morphology cimport Morphology class Morphologizer(Pipe): name = 'morphologizer' @classmethod def Model(cls, attr_nums, **cfg): if cfg.get('pretrained_dims') and not cfg.get('pretrained_vectors'): raise ValueError(TempErrors.T008) return build_morphologizer_model(attr_nums, **cfg) def __init__(self, vocab, model=True, **cfg): self.vocab = vocab self.model = model self.cfg = OrderedDict(sorted(cfg.items())) self.cfg.setdefault('cnn_maxout_pieces', 2) @property def labels(self): return self.vocab.morphology.tag_names @property def tok2vec(self): if self.model in (None, True, False): return None else: return chain(self.model.tok2vec, flatten) def __call__(self, doc): features, tokvecs = self.predict([doc]) self.set_annotations([doc], tags, tensors=tokvecs) return doc def pipe(self, stream, batch_size=128, n_threads=-1): for docs in cytoolz.partition_all(batch_size, stream): docs = list(docs) features, tokvecs = self.predict(docs) self.set_annotations(docs, features, tensors=tokvecs) yield from docs def predict(self, docs): if not any(len(doc) for doc in docs): # Handle case where there are no tokens in any docs. n_labels = self.model.nO guesses = [self.model.ops.allocate((0, n_labels)) for doc in docs] tokvecs = self.model.ops.allocate((0, self.model.tok2vec.nO)) return guesses, tokvecs tokvecs = self.model.tok2vec(docs) scores = self.model.softmax(tokvecs) guesses = [] # Resolve multisoftmax into guesses for doc_scores in scores: guesses.append(scores_to_guesses(doc_scores, self.model.softmax.out_sizes)) return guesses, tokvecs def set_annotations(self, docs, batch_feature_ids, tensors=None): if isinstance(docs, Doc): docs = [docs] cdef Doc doc cdef Vocab vocab = self.vocab for i, doc in enumerate(docs): doc_feat_ids = batch_feat_ids[i] if hasattr(doc_feat_ids, 'get'): doc_feat_ids = doc_feat_ids.get() # Convert the neuron indices into feature IDs. offset = self.vocab.morphology.first_feature for j, nr_feat in enumerate(self.model.softmax.out_sizes): doc_feat_ids[:, j] += offset offset += nr_feat # Now add the analysis, and set the hash. for j in range(doc_feat_ids.shape[0]): doc.c[j].morph = self.vocab.morphology.add(doc_feat_ids[j]) def update(self, docs, golds, drop=0., sgd=None, losses=None): if losses is not None and self.name not in losses: losses[self.name] = 0. tag_scores, bp_tag_scores = self.model.begin_update(docs, drop=drop) loss, d_tag_scores = self.get_loss(docs, golds, tag_scores) bp_tag_scores(d_tag_scores, sgd=sgd) if losses is not None: losses[self.name] += loss def get_loss(self, docs, golds, scores): guesses = [] for doc_scores in scores: guesses.append(scores_to_guesses(doc_scores, self.model.softmax.out_sizes)) guesses = self.model.ops.flatten(guesses) cdef int idx = 0 target = numpy.zeros(scores.shape, dtype='f') for gold in golds: for features in gold.morphology: if features is None: target[idx] = guesses[idx] else: for feature in features: column = feature_to_column(feature) # TODO target[idx, column] = 1 idx += 1 target = self.model.ops.xp.array(target, dtype='f') d_scores = scores - target loss = (d_scores**2).sum() d_scores = self.model.ops.unflatten(d_scores, [len(d) for d in docs]) return float(loss), d_scores def use_params(self, params): with self.model.use_params(params): yield