from __future__ import unicode_literals, print_function import plac import json import random import pathlib from spacy.tokens import Doc from spacy.syntax.nonproj import PseudoProjectivity from spacy.language import Language from spacy.gold import GoldParse from spacy.tagger import Tagger from spacy.pipeline import DependencyParser, TokenVectorEncoder from spacy.syntax.parser import get_templates from spacy.syntax.arc_eager import ArcEager from spacy.scorer import Scorer from spacy.language_data.tag_map import TAG_MAP as DEFAULT_TAG_MAP import spacy.attrs import io from thinc.neural.ops import CupyOps from thinc.neural import Model try: import cupy print("Using GPU") Model.ops = CupyOps() except ImportError: pass def read_conllx(loc, n=0): with io.open(loc, 'r', encoding='utf8') as file_: text = file_.read() i = 0 for sent in text.strip().split('\n\n'): lines = sent.strip().split('\n') if lines: while lines[0].startswith('#'): lines.pop(0) tokens = [] for line in lines: id_, word, lemma, pos, tag, morph, head, dep, _1, \ _2 = line.split('\t') if '-' in id_ or '.' in id_: continue try: id_ = int(id_) - 1 head = (int(head) - 1) if head != '0' else id_ dep = 'ROOT' if dep == 'root' else dep #'unlabelled' tokens.append((id_, word, pos+'__'+morph, head, dep, 'O')) except: raise tuples = [list(t) for t in zip(*tokens)] yield (None, [[tuples, []]]) i += 1 if n >= 1 and i >= n: break def score_model(vocab, encoder, tagger, parser, Xs, ys, verbose=False): scorer = Scorer() correct = 0. total = 0. for doc, gold in zip(Xs, ys): doc = Doc(vocab, words=[w.text for w in doc]) encoder(doc) tagger(doc) parser(doc) PseudoProjectivity.deprojectivize(doc) scorer.score(doc, gold, verbose=verbose) for token, tag in zip(doc, gold.tags): univ_guess, _ = token.tag_.split('_', 1) univ_truth, _ = tag.split('_', 1) correct += univ_guess == univ_truth total += 1 return scorer def organize_data(vocab, train_sents): Xs = [] ys = [] for _, doc_sents in train_sents: for (ids, words, tags, heads, deps, ner), _ in doc_sents: doc = Doc(vocab, words=words) gold = GoldParse(doc, tags=tags, heads=heads, deps=deps) Xs.append(doc) ys.append(gold) return Xs, ys def main(lang_name, train_loc, dev_loc, model_dir, clusters_loc=None): LangClass = spacy.util.get_lang_class(lang_name) train_sents = list(read_conllx(train_loc)) dev_sents = list(read_conllx(dev_loc)) train_sents = PseudoProjectivity.preprocess_training_data(train_sents) actions = ArcEager.get_actions(gold_parses=train_sents) features = get_templates('basic') model_dir = pathlib.Path(model_dir) if not model_dir.exists(): model_dir.mkdir() if not (model_dir / 'deps').exists(): (model_dir / 'deps').mkdir() if not (model_dir / 'pos').exists(): (model_dir / 'pos').mkdir() with (model_dir / 'deps' / 'config.json').open('wb') as file_: file_.write( json.dumps( {'pseudoprojective': True, 'labels': actions, 'features': features}).encode('utf8')) vocab = LangClass.Defaults.create_vocab() if not (model_dir / 'vocab').exists(): (model_dir / 'vocab').mkdir() else: if (model_dir / 'vocab' / 'strings.json').exists(): with (model_dir / 'vocab' / 'strings.json').open() as file_: vocab.strings.load(file_) if (model_dir / 'vocab' / 'lexemes.bin').exists(): vocab.load_lexemes(model_dir / 'vocab' / 'lexemes.bin') if clusters_loc is not None: clusters_loc = pathlib.Path(clusters_loc) with clusters_loc.open() as file_: for line in file_: try: cluster, word, freq = line.split() except ValueError: continue lex = vocab[word] lex.cluster = int(cluster[::-1], 2) # Populate vocab for _, doc_sents in train_sents: for (ids, words, tags, heads, deps, ner), _ in doc_sents: for word in words: _ = vocab[word] for dep in deps: _ = vocab[dep] for tag in tags: _ = vocab[tag] if vocab.morphology.tag_map: for tag in tags: assert tag in vocab.morphology.tag_map, repr(tag) tagger = Tagger(vocab) encoder = TokenVectorEncoder(vocab) parser = DependencyParser(vocab, actions=actions, features=features, L1=0.0) Xs, ys = organize_data(vocab, train_sents) dev_Xs, dev_ys = organize_data(vocab, dev_sents) Xs = Xs ys = ys dev_Xs = dev_Xs[:1000] dev_ys = dev_ys[:1000] with encoder.model.begin_training(Xs[:100], ys[:100]) as (trainer, optimizer): docs = list(Xs) for doc in docs: encoder(doc) parser.begin_training(docs, ys) nn_loss = [0.] def track_progress(): with encoder.tagger.use_params(optimizer.averages): scorer = score_model(vocab, encoder, tagger, parser, dev_Xs, dev_ys) itn = len(nn_loss) print('%d:\t%.3f\t%.3f\t%.3f' % (itn, nn_loss[-1], scorer.uas, scorer.tags_acc)) nn_loss.append(0.) trainer.each_epoch.append(track_progress) trainer.batch_size = 12 trainer.nb_epoch = 10 for docs, golds in trainer.iterate(Xs, ys): docs = [Doc(vocab, words=[w.text for w in doc]) for doc in docs] tokvecs, upd_tokvecs = encoder.begin_update(docs) for doc, tokvec in zip(docs, tokvecs): doc.tensor = tokvec for doc, gold in zip(docs, golds): tagger.update(doc, gold) d_tokvecs, loss = parser.update(docs, golds, sgd=optimizer) upd_tokvecs(d_tokvecs, sgd=optimizer) encoder.update(docs, golds, sgd=optimizer) nn_loss[-1] += loss nlp = LangClass(vocab=vocab, tagger=tagger, parser=parser) nlp.end_training(model_dir) scorer = score_model(vocab, tagger, parser, read_conllx(dev_loc)) print('%d:\t%.3f\t%.3f\t%.3f' % (itn, scorer.uas, scorer.las, scorer.tags_acc)) if __name__ == '__main__': plac.call(main)