from copy import deepcopy # coding: utf8 from __future__ import unicode_literals def merge_ents(doc): """ Helper: merge adjacent entities into single tokens; modifies the doc. """ for ent in doc.ents: ent.merge(ent.root.tag_, ent.text, ent.label_) return doc def format_POS(token, light, flat): """ Helper: form the POS output for a token. """ subtree = dict([ ("word", token.text), ("lemma", token.lemma_), # trigger ("NE", token.ent_type_), # trigger ("POS_fine", token.tag_), ("POS_coarse", token.pos_), ("arc", token.dep_), ("modifiers", []) ]) if light: subtree.pop("lemma") subtree.pop("NE") if flat: subtree.pop("arc") subtree.pop("modifiers") return subtree def POS_tree(root, light=False, flat=False): """ Helper: generate a POS tree for a root token. The doc must have merge_ents(doc) ran on it. """ subtree = format_POS(root, light=light, flat=flat) for c in root.children: subtree["modifiers"].append(POS_tree(c)) return subtree def parse_tree(doc, light=False, flat=False): """ Makes a copy of the doc, then construct a syntactic parse tree, similar to the one used in displaCy. Generates the POS tree for all sentences in a doc. Args: doc: The doc for parsing. Returns: [parse_trees (Dict)]: >>> from spacy.en import English >>> nlp = English() >>> doc = nlp('Bob brought Alice the pizza. Alice ate the pizza.') >>> trees = doc.print_tree() [{'modifiers': [{'modifiers': [], 'NE': 'PERSON', 'word': 'Bob', 'arc': 'nsubj', 'POS_coarse': 'PROPN', 'POS_fine': 'NNP', 'lemma': 'Bob'}, {'modifiers': [], 'NE': 'PERSON', 'word': 'Alice', 'arc': 'dobj', 'POS_coarse': 'PROPN', 'POS_fine': 'NNP', 'lemma': 'Alice'}, {'modifiers': [{'modifiers': [], 'NE': '', 'word': 'the', 'arc': 'det', 'POS_coarse': 'DET', 'POS_fine': 'DT', 'lemma': 'the'}], 'NE': '', 'word': 'pizza', 'arc': 'dobj', 'POS_coarse': 'NOUN', 'POS_fine': 'NN', 'lemma': 'pizza'}, {'modifiers': [], 'NE': '', 'word': '.', 'arc': 'punct', 'POS_coarse': 'PUNCT', 'POS_fine': '.', 'lemma': '.'}], 'NE': '', 'word': 'brought', 'arc': 'ROOT', 'POS_coarse': 'VERB', 'POS_fine': 'VBD', 'lemma': 'bring'}, {'modifiers': [{'modifiers': [], 'NE': 'PERSON', 'word': 'Alice', 'arc': 'nsubj', 'POS_coarse': 'PROPN', 'POS_fine': 'NNP', 'lemma': 'Alice'}, {'modifiers': [{'modifiers': [], 'NE': '', 'word': 'the', 'arc': 'det', 'POS_coarse': 'DET', 'POS_fine': 'DT', 'lemma': 'the'}], 'NE': '', 'word': 'pizza', 'arc': 'dobj', 'POS_coarse': 'NOUN', 'POS_fine': 'NN', 'lemma': 'pizza'}, {'modifiers': [], 'NE': '', 'word': '.', 'arc': 'punct', 'POS_coarse': 'PUNCT', 'POS_fine': '.', 'lemma': '.'}], 'NE': '', 'word': 'ate', 'arc': 'ROOT', 'POS_coarse': 'VERB', 'POS_fine': 'VBD', 'lemma': 'eat'}] """ doc_clone = deepcopy(doc) merge_ents(doc_clone) # merge the entities into single tokens first return [POS_tree(sent.root, light=light, flat=flat) for sent in doc_clone.sents]