import random import numpy import time import re from collections import Counter import plac from pathlib import Path from thinc.api import Linear, Maxout, chain, list2array from wasabi import msg import srsly from thinc.api import use_pytorch_for_gpu_memory from ..errors import Errors from ..ml.models.multi_task import build_masked_language_model from ..tokens import Doc from ..attrs import ID, HEAD from .. import util from ..gold import Example @plac.annotations( # fmt: off texts_loc=("Path to JSONL file with raw texts to learn from, with text provided as the key 'text' or tokens as the key 'tokens'", "positional", None, str), vectors_model=("Name or path to spaCy model with vectors to learn from", "positional", None, str), config_path=("Path to config file", "positional", None, Path), output_dir=("Directory to write models to on each epoch", "positional", None, Path), use_gpu=("Use GPU", "option", "g", int), # fmt: on ) def pretrain( texts_loc, vectors_model, config_path, output_dir, use_gpu=-1, ): """ Pre-train the 'token-to-vector' (tok2vec) layer of pipeline components, using an approximate language-modelling objective. Specifically, we load pretrained vectors, and train a component like a CNN, BiLSTM, etc to predict vectors which match the pretrained ones. The weights are saved to a directory after each epoch. You can then pass a path to one of these pretrained weights files to the 'spacy train' command. This technique may be especially helpful if you have little labelled data. However, it's still quite experimental, so your mileage may vary. To load the weights back in during 'spacy train', you need to ensure all settings are the same between pretraining and training. Ideally, this is done by using the same config file for both commands. """ if not config_path or not config_path.exists(): msg.fail("Config file not found", config_path, exits=1) if use_gpu >= 0: msg.info("Using GPU") util.use_gpu(use_gpu) else: msg.info("Using CPU") msg.info(f"Loading config from: {config_path}") config = util.load_config(config_path, create_objects=False) util.fix_random_seed(config["training"]["seed"]) if config["training"]["use_pytorch_for_gpu_memory"]: use_pytorch_for_gpu_memory() if output_dir.exists() and [p for p in output_dir.iterdir()]: msg.warn( "Output directory is not empty", "It is better to use an empty directory or refer to a new output path, " "then the new directory will be created for you.", ) if not output_dir.exists(): output_dir.mkdir() msg.good(f"Created output directory: {output_dir}") srsly.write_json(output_dir / "config.json", config) msg.good("Saved config file in the output directory") config = util.load_config(config_path, create_objects=True) pretrain_config = config["pretraining"] # Load texts from file or stdin if texts_loc != "-": # reading from a file texts_loc = Path(texts_loc) if not texts_loc.exists(): msg.fail("Input text file doesn't exist", texts_loc, exits=1) with msg.loading("Loading input texts..."): texts = list(srsly.read_jsonl(texts_loc)) if not texts: msg.fail("Input file is empty", texts_loc, exits=1) msg.good("Loaded input texts") random.shuffle(texts) else: # reading from stdin msg.text("Reading input text from stdin...") texts = srsly.read_jsonl("-") with msg.loading(f"Loading model '{vectors_model}'..."): nlp = util.load_model(vectors_model) msg.good(f"Loaded model '{vectors_model}'") tok2vec = pretrain_config["model"] model = create_pretraining_model(nlp, tok2vec) optimizer = pretrain_config["optimizer"] epoch_start = 0 # TODO tracker = ProgressTracker(frequency=10000) msg.divider(f"Pre-training tok2vec layer - starting at epoch {epoch_start}") row_settings = {"widths": (3, 10, 10, 6, 4), "aligns": ("r", "r", "r", "r", "r")} msg.row(("#", "# Words", "Total Loss", "Loss", "w/s"), **row_settings) def _save_model(epoch, is_temp=False): is_temp_str = ".temp" if is_temp else "" with model.use_params(optimizer.averages): with (output_dir / f"model{epoch}{is_temp_str}.bin").open("wb") as file_: file_.write(model.get_ref("tok2vec").to_bytes()) log = { "nr_word": tracker.nr_word, "loss": tracker.loss, "epoch_loss": tracker.epoch_loss, "epoch": epoch, } with (output_dir / "log.jsonl").open("a") as file_: file_.write(srsly.json_dumps(log) + "\n") skip_counter = 0 loss_func = pretrain_config["loss_func"] for epoch in range(epoch_start, pretrain_config["max_epochs"]): examples = [Example(doc=text) for text in texts] batches = util.minibatch_by_words(examples, size=pretrain_config["batch_size"]) for batch_id, batch in enumerate(batches): docs, count = make_docs( nlp, [ex.doc for ex in batch], max_length=pretrain_config["max_length"], min_length=pretrain_config["min_length"], ) skip_counter += count loss = make_update(model, docs, optimizer, distance=loss_func) progress = tracker.update(epoch, loss, docs) if progress: msg.row(progress, **row_settings) if texts_loc == "-" and tracker.words_per_epoch[epoch] >= 10 ** 7: break if pretrain_config["n_save_every"] and (batch_id % pretrain_config["n_save_every"] == 0): _save_model(epoch, is_temp=True) _save_model(epoch) tracker.epoch_loss = 0.0 if texts_loc != "-": # Reshuffle the texts if texts were loaded from a file random.shuffle(texts) if skip_counter > 0: msg.warn(f"Skipped {skip_counter} empty values") msg.good("Successfully finished pretrain") def make_update(model, docs, optimizer, distance): """Perform an update over a single batch of documents. docs (iterable): A batch of `Doc` objects. optimizer (callable): An optimizer. RETURNS loss: A float for the loss. """ predictions, backprop = model.begin_update(docs) loss, gradients = get_vectors_loss(model.ops, docs, predictions, distance) backprop(gradients) model.finish_update(optimizer) # Don't want to return a cupy object here # The gradients are modified in-place by the BERT MLM, # so we get an accurate loss return float(loss) def make_docs(nlp, batch, min_length, max_length): docs = [] skip_count = 0 for record in batch: if not isinstance(record, dict): raise TypeError(Errors.E137.format(type=type(record), line=record)) if "tokens" in record: words = record["tokens"] if not words: skip_count += 1 continue doc = Doc(nlp.vocab, words=words) elif "text" in record: text = record["text"] if not text: skip_count += 1 continue doc = nlp.make_doc(text) else: raise ValueError(Errors.E138.format(text=record)) if "heads" in record: heads = record["heads"] heads = numpy.asarray(heads, dtype="uint64") heads = heads.reshape((len(doc), 1)) doc = doc.from_array([HEAD], heads) if min_length <= len(doc) < max_length: docs.append(doc) return docs, skip_count def get_vectors_loss(ops, docs, prediction, distance): """Compute a mean-squared error loss between the documents' vectors and the prediction. Note that this is ripe for customization! We could compute the vectors in some other word, e.g. with an LSTM language model, or use some other type of objective. """ # The simplest way to implement this would be to vstack the # token.vector values, but that's a bit inefficient, especially on GPU. # Instead we fetch the index into the vectors table for each of our tokens, # and look them up all at once. This prevents data copying. ids = ops.flatten([doc.to_array(ID).ravel() for doc in docs]) target = docs[0].vocab.vectors.data[ids] d_target, loss = distance(prediction, target) return loss, d_target def create_pretraining_model(nlp, tok2vec): """Define a network for the pretraining. We simply add an output layer onto the tok2vec input model. The tok2vec input model needs to be a model that takes a batch of Doc objects (as a list), and returns a list of arrays. Each array in the output needs to have one row per token in the doc. """ output_size = nlp.vocab.vectors.data.shape[1] output_layer = chain( Maxout(nO=300, nP=3, normalize=True, dropout=0.0), Linear(output_size) ) # This is annoying, but the parser etc have the flatten step after # the tok2vec. To load the weights in cleanly, we need to match # the shape of the models' components exactly. So what we cann # "tok2vec" has to be the same set of processes as what the components do. tok2vec = chain(tok2vec, list2array()) model = chain(tok2vec, output_layer) model.initialize(X=[nlp.make_doc("Give it a doc to infer shapes")]) mlm_model = build_masked_language_model(nlp.vocab, model) mlm_model.set_ref("tok2vec", tok2vec) mlm_model.set_ref("output_layer", output_layer) mlm_model.initialize(X=[nlp.make_doc("Give it a doc to infer shapes")]) return mlm_model class ProgressTracker(object): def __init__(self, frequency=1000000): self.loss = 0.0 self.prev_loss = 0.0 self.nr_word = 0 self.words_per_epoch = Counter() self.frequency = frequency self.last_time = time.time() self.last_update = 0 self.epoch_loss = 0.0 def update(self, epoch, loss, docs): self.loss += loss self.epoch_loss += loss words_in_batch = sum(len(doc) for doc in docs) self.words_per_epoch[epoch] += words_in_batch self.nr_word += words_in_batch words_since_update = self.nr_word - self.last_update if words_since_update >= self.frequency: wps = words_since_update / (time.time() - self.last_time) self.last_update = self.nr_word self.last_time = time.time() loss_per_word = self.loss - self.prev_loss status = ( epoch, self.nr_word, _smart_round(self.loss, width=10), _smart_round(loss_per_word, width=6), int(wps), ) self.prev_loss = float(self.loss) return status else: return None def _smart_round(figure, width=10, max_decimal=4): """Round large numbers as integers, smaller numbers as decimals.""" n_digits = len(str(int(figure))) n_decimal = width - (n_digits + 1) if n_decimal <= 1: return str(int(figure)) else: n_decimal = min(n_decimal, max_decimal) format_str = "%." + str(n_decimal) + "f" return format_str % figure