# cython: infer_types=True # cython: profile=True from __future__ import unicode_literals from libc.stdint cimport uintptr_t from libc.stdio cimport printf from libcpp.vector cimport vector from cymem.cymem cimport Pool from preshed.maps cimport MapStruct, map_init, map_set, map_get, map_clear from preshed.maps cimport map_iter, key_t import numpy as np from ..attrs cimport ORTH, POS, TAG, DEP, LEMMA, attr_id_t from ..vocab cimport Vocab from ..tokens.doc cimport Doc, get_token_attr from ._schemas import TOKEN_PATTERN_SCHEMA from ..errors import Errors, Warnings, deprecation_warning, user_warning cdef class PhraseMatcher: """Efficiently match large terminology lists. While the `Matcher` matches sequences based on lists of token descriptions, the `PhraseMatcher` accepts match patterns in the form of `Doc` objects. DOCS: https://spacy.io/api/phrasematcher USAGE: https://spacy.io/usage/rule-based-matching#phrasematcher Adapted from FlashText: https://github.com/vi3k6i5/flashtext MIT License (see `LICENSE`) Copyright (c) 2017 Vikash Singh (vikash.duliajan@gmail.com) """ cdef Vocab vocab cdef attr_id_t attr cdef object _callbacks cdef object _keywords cdef object _docs cdef bint _validate cdef MapStruct* c_map cdef Pool mem cdef key_t _terminal_node cdef void find_matches(self, key_t* hash_array, int hash_array_len, vector[MatchStruct] *matches) nogil def __init__(self, Vocab vocab, max_length=0, attr="ORTH", validate=False): """Initialize the PhraseMatcher. vocab (Vocab): The shared vocabulary. attr (int / unicode): Token attribute to match on. validate (bool): Perform additional validation when patterns are added. RETURNS (PhraseMatcher): The newly constructed object. DOCS: https://spacy.io/api/phrasematcher#init """ if max_length != 0: deprecation_warning(Warnings.W010) self.vocab = vocab self._callbacks = {} self._keywords = {} self._docs = {} self._validate = validate self.mem = Pool() self.c_map = self.mem.alloc(1, sizeof(MapStruct)) self._terminal_node = 1 # or random: np.random.randint(0, high=np.iinfo(np.uint64).max, dtype=np.uint64) map_init(self.mem, self.c_map, 8) if isinstance(attr, long): self.attr = attr else: attr = attr.upper() if attr == "TEXT": attr = "ORTH" if attr not in TOKEN_PATTERN_SCHEMA["items"]["properties"]: raise ValueError(Errors.E152.format(attr=attr)) self.attr = self.vocab.strings[attr] def __len__(self): """Get the number of match IDs added to the matcher. RETURNS (int): The number of rules. DOCS: https://spacy.io/api/phrasematcher#len """ return len(self._callbacks) def __contains__(self, key): """Check whether the matcher contains rules for a match ID. key (unicode): The match ID. RETURNS (bool): Whether the matcher contains rules for this match ID. DOCS: https://spacy.io/api/phrasematcher#contains """ return key in self._callbacks def __reduce__(self): data = (self.vocab, self._docs, self._callbacks) return (unpickle_matcher, data, None, None) def remove(self, key): """Remove a match-rule from the matcher by match ID. key (unicode): The match ID. """ if key not in self._keywords: return cdef MapStruct* current_node cdef MapStruct* terminal_map cdef MapStruct* node_pointer cdef void* result cdef key_t terminal_key cdef void* value cdef int c_i = 0 for keyword in self._keywords[key]: current_node = self.c_map token_trie_list = [] for token in keyword: result = map_get(current_node, token) if result: token_trie_list.append((token, current_node)) current_node = result else: # if token is not found, break out of the loop current_node = NULL break # remove the tokens from trie node if there are no other # keywords with them result = map_get(current_node, self._terminal_node) if current_node != NULL and result: # if this is the only remaining key, remove unnecessary paths terminal_map = result terminal_keys = [] c_i = 0 while map_iter(terminal_map, &c_i, &terminal_key, &value): terminal_keys.append(self.vocab.strings[terminal_key]) # TODO: not working, fix remove for unused paths/maps if False and terminal_keys == [key]: # we found a complete match for input keyword token_trie_list.append((self.vocab.strings[key], terminal_map)) token_trie_list.reverse() for key_to_remove, py_node_pointer in token_trie_list: node_pointer = py_node_pointer result = map_get(node_pointer, key_to_remove) if node_pointer.filled == 1: map_clear(node_pointer, key_to_remove) self.mem.free(result) pass else: # more than one key means more than 1 path, # delete not required path and keep the other map_clear(node_pointer, key_to_remove) self.mem.free(result) break # otherwise simply remove the key else: result = map_get(current_node, self._terminal_node) if result: map_clear(result, self.vocab.strings[key]) del self._keywords[key] del self._callbacks[key] del self._docs[key] def add(self, key, on_match, *docs): """Add a match-rule to the phrase-matcher. A match-rule consists of: an ID key, an on_match callback, and one or more patterns. key (unicode): The match ID. on_match (callable): Callback executed on match. *docs (Doc): `Doc` objects representing match patterns. DOCS: https://spacy.io/api/phrasematcher#add """ _ = self.vocab[key] self._callbacks[key] = on_match self._keywords.setdefault(key, []) self._docs.setdefault(key, set()) self._docs[key].update(docs) cdef MapStruct* current_node cdef MapStruct* internal_node cdef void* result for doc in docs: if len(doc) == 0: continue if self.attr in (POS, TAG, LEMMA) and not doc.is_tagged: raise ValueError(Errors.E155.format()) if self.attr == DEP and not doc.is_parsed: raise ValueError(Errors.E156.format()) if self._validate and (doc.is_tagged or doc.is_parsed) \ and self.attr not in (DEP, POS, TAG, LEMMA): string_attr = self.vocab.strings[self.attr] user_warning(Warnings.W012.format(key=key, attr=string_attr)) keyword = self._convert_to_array(doc) # keep track of keywords per key to make remove easier # (would use a set, but can't hash numpy arrays) self._keywords[key].append(keyword) current_node = self.c_map for token in keyword: result = map_get(current_node, token) if not result: internal_node = self.mem.alloc(1, sizeof(MapStruct)) map_init(self.mem, internal_node, 8) map_set(self.mem, current_node, token, internal_node) result = internal_node current_node = result result = map_get(current_node, self._terminal_node) if not result: internal_node = self.mem.alloc(1, sizeof(MapStruct)) map_init(self.mem, internal_node, 8) map_set(self.mem, current_node, self._terminal_node, internal_node) result = internal_node map_set(self.mem, result, self.vocab.strings[key], NULL) def __call__(self, doc): """Find all sequences matching the supplied patterns on the `Doc`. doc (Doc): The document to match over. RETURNS (list): A list of `(key, start, end)` tuples, describing the matches. A match tuple describes a span `doc[start:end]`. The `label_id` and `key` are both integers. DOCS: https://spacy.io/api/phrasematcher#call """ doc_array = self._convert_to_array(doc) matches = [] if doc_array is None or len(doc_array) == 0: # if doc_array is empty or None just return empty list return matches if not doc_array.flags['C_CONTIGUOUS']: doc_array = np.ascontiguousarray(doc_array) cdef key_t[::1] doc_array_memview = doc_array cdef vector[MatchStruct] c_matches self.find_matches(&doc_array_memview[0], doc_array_memview.shape[0], &c_matches) for i in range(c_matches.size()): matches.append((c_matches[i].match_id, c_matches[i].start, c_matches[i].end)) for i, (ent_id, start, end) in enumerate(matches): on_match = self._callbacks.get(ent_id) if on_match is not None: on_match(self, doc, i, matches) return matches cdef void find_matches(self, key_t* hash_array, int hash_array_len, vector[MatchStruct] *matches) nogil: cdef MapStruct* current_node = self.c_map cdef int start = 0 cdef int idx = 0 cdef int idy = 0 cdef key_t key cdef void* value cdef int i = 0 cdef MatchStruct ms cdef void* result while idx < hash_array_len: start = idx token = hash_array[idx] # look for sequences from this position result = map_get(current_node, token) if result: current_node = result idy = idx + 1 while idy < hash_array_len: result = map_get(current_node, self._terminal_node) if result: i = 0 while map_iter(result, &i, &key, &value): ms = make_matchstruct(key, start, idy) matches.push_back(ms) inner_token = hash_array[idy] result = map_get(current_node, inner_token) if result: current_node = result idy += 1 else: break else: # end of hash_array reached result = map_get(current_node, self._terminal_node) if result: i = 0 while map_iter(result, &i, &key, &value): ms = make_matchstruct(key, start, idy) matches.push_back(ms) current_node = self.c_map idx += 1 def pipe(self, stream, batch_size=1000, n_threads=-1, return_matches=False, as_tuples=False): """Match a stream of documents, yielding them in turn. docs (iterable): A stream of documents. batch_size (int): Number of documents to accumulate into a working set. return_matches (bool): Yield the match lists along with the docs, making results (doc, matches) tuples. as_tuples (bool): Interpret the input stream as (doc, context) tuples, and yield (result, context) tuples out. If both return_matches and as_tuples are True, the output will be a sequence of ((doc, matches), context) tuples. YIELDS (Doc): Documents, in order. DOCS: https://spacy.io/api/phrasematcher#pipe """ if n_threads != -1: deprecation_warning(Warnings.W016) if as_tuples: for doc, context in stream: matches = self(doc) if return_matches: yield ((doc, matches), context) else: yield (doc, context) else: for doc in stream: matches = self(doc) if return_matches: yield (doc, matches) else: yield doc def get_lex_value(self, Doc doc, int i): if self.attr == ORTH: # Return the regular orth value of the lexeme return doc.c[i].lex.orth # Get the attribute value instead, e.g. token.pos attr_value = get_token_attr(&doc.c[i], self.attr) if attr_value in (0, 1): # Value is boolean, convert to string string_attr_value = str(attr_value) else: string_attr_value = self.vocab.strings[attr_value] string_attr_name = self.vocab.strings[self.attr] # Concatenate the attr name and value to not pollute lexeme space # e.g. 'POS-VERB' instead of just 'VERB', which could otherwise # create false positive matches matcher_attr_string = "matcher:{}-{}".format(string_attr_name, string_attr_value) # Add new string to vocab _ = self.vocab[matcher_attr_string] return self.vocab.strings[matcher_attr_string] def _convert_to_array(self, Doc doc): return np.array([self.get_lex_value(doc, i) for i in range(len(doc))], dtype=np.uint64) def unpickle_matcher(vocab, docs, callbacks): matcher = PhraseMatcher(vocab) for key, specs in docs.items(): callback = callbacks.get(key, None) matcher.add(key, callback, *specs) return matcher cdef MatchStruct make_matchstruct(key_t match_id, int start, int end) nogil: cdef MatchStruct ms ms.match_id = match_id ms.start = start ms.end = end return ms