# coding: utf-8 from __future__ import unicode_literals from ...lemmatizer import Lemmatizer from ...parts_of_speech import NAMES class PolishLemmatizer(Lemmatizer): # This lemmatizer implements lookup lemmatization based on # the Morfeusz dictionary (morfeusz.sgjp.pl/en) by Institute of Computer Science PAS # It utilizes some prefix based improvements for # verb and adjectives lemmatization, as well as case-sensitive # lemmatization for nouns def __init__(self, lookups, *args, **kwargs): # this lemmatizer is lookup based, so it does not require an index, exceptionlist, or rules super().__init__(lookups) self.lemma_lookups = {} for tag in [ "ADJ", "ADP", "ADV", "AUX", "NOUN", "NUM", "PART", "PRON", "VERB", "X", ]: self.lemma_lookups[tag] = self.lookups.get_table( "lemma_lookup_" + tag.lower(), {} ) self.lemma_lookups["DET"] = self.lemma_lookups["X"] self.lemma_lookups["PROPN"] = self.lemma_lookups["NOUN"] def __call__(self, string, univ_pos, morphology=None): if isinstance(univ_pos, int): univ_pos = NAMES.get(univ_pos, "X") univ_pos = univ_pos.upper() if univ_pos == "NOUN": return self.lemmatize_noun(string, morphology) if univ_pos != "PROPN": string = string.lower() if univ_pos == "ADJ": return self.lemmatize_adj(string, morphology) elif univ_pos == "VERB": return self.lemmatize_verb(string, morphology) lemma_dict = self.lemma_lookups.get(univ_pos, {}) return [lemma_dict.get(string, string.lower())] def lemmatize_adj(self, string, morphology): # this method utilizes different procedures for adjectives # with 'nie' and 'naj' prefixes lemma_dict = self.lemma_lookups["ADJ"] if string[:3] == "nie": search_string = string[3:] if search_string[:3] == "naj": naj_search_string = search_string[3:] if naj_search_string in lemma_dict: return [lemma_dict[naj_search_string]] if search_string in lemma_dict: return [lemma_dict[search_string]] if string[:3] == "naj": naj_search_string = string[3:] if naj_search_string in lemma_dict: return [lemma_dict[naj_search_string]] return [lemma_dict.get(string, string)] def lemmatize_verb(self, string, morphology): # this method utilizes a different procedure for verbs # with 'nie' prefix lemma_dict = self.lemma_lookups["VERB"] if string[:3] == "nie": search_string = string[3:] if search_string in lemma_dict: return [lemma_dict[search_string]] return [lemma_dict.get(string, string)] def lemmatize_noun(self, string, morphology): # this method is case-sensitive, in order to work # for incorrectly tagged proper names lemma_dict = self.lemma_lookups["NOUN"] if string != string.lower(): if string.lower() in lemma_dict: return [lemma_dict[string.lower()]] elif string in lemma_dict: return [lemma_dict[string]] return [string.lower()] return [lemma_dict.get(string, string)] def lookup(self, string, orth=None): return string.lower() def lemmatize(self, string, index, exceptions, rules): raise NotImplementedError