# cython: infer_types=True # cython: profile=True # cython: cdivision=True # cython: boundscheck=False # coding: utf-8 from __future__ import unicode_literals, print_function from collections import Counter import ujson import contextlib from libc.math cimport exp cimport cython cimport cython.parallel import cytoolz import dill import numpy.random cimport numpy as np from cpython.ref cimport PyObject, Py_INCREF, Py_XDECREF from cpython.exc cimport PyErr_CheckSignals from libc.stdint cimport uint32_t, uint64_t from libc.string cimport memset, memcpy from libc.stdlib cimport malloc, calloc, free from thinc.typedefs cimport weight_t, class_t, feat_t, atom_t, hash_t from thinc.linear.avgtron cimport AveragedPerceptron from thinc.linalg cimport VecVec from thinc.structs cimport SparseArrayC, FeatureC, ExampleC from thinc.extra.eg cimport Example from cymem.cymem cimport Pool, Address from murmurhash.mrmr cimport hash64 from preshed.maps cimport MapStruct from preshed.maps cimport map_get from thinc.api import layerize, chain from thinc.neural import Model, Affine, ELU, ReLu, Maxout from thinc.neural.ops import NumpyOps, CupyOps from .. import util from ..util import get_async, get_cuda_stream from .._ml import zero_init, PrecomputableAffine, PrecomputableMaxouts from .._ml import Tok2Vec, doc2feats, rebatch from . import _parse_features from ._parse_features cimport CONTEXT_SIZE from ._parse_features cimport fill_context from .stateclass cimport StateClass from ._state cimport StateC from .nonproj import PseudoProjectivity from .transition_system import OracleError from .transition_system cimport TransitionSystem, Transition from ..structs cimport TokenC from ..tokens.doc cimport Doc from ..strings cimport StringStore from ..gold cimport GoldParse from ..attrs cimport TAG, DEP def get_templates(*args, **kwargs): return [] USE_FTRL = True DEBUG = False def set_debug(val): global DEBUG DEBUG = val cdef class precompute_hiddens: '''Allow a model to be "primed" by pre-computing input features in bulk. This is used for the parser, where we want to take a batch of documents, and compute vectors for each (token, position) pair. These vectors can then be reused, especially for beam-search. Let's say we're using 12 features for each state, e.g. word at start of buffer, three words on stack, their children, etc. In the normal arc-eager system, a document of length N is processed in 2*N states. This means we'll create 2*N*12 feature vectors --- but if we pre-compute, we only need N*12 vector computations. The saving for beam-search is much better: if we have a beam of k, we'll normally make 2*N*12*K computations -- so we can save the factor k. This also gives a nice CPU/GPU division: we can do all our hard maths up front, packed into large multiplications, and do the hard-to-program parsing on the CPU. ''' cdef int nF, nO cdef bint _is_synchronized cdef public object ops cdef np.ndarray _features cdef np.ndarray _cached cdef object _cuda_stream cdef object _bp_hiddens def __init__(self, batch_size, tokvecs, lower_model, cuda_stream=None, drop=0.): gpu_cached, bp_features = lower_model.begin_update(tokvecs, drop=drop) cdef np.ndarray cached if not isinstance(gpu_cached, numpy.ndarray): # Note the passing of cuda_stream here: it lets # cupy make the copy asynchronously. # We then have to block before first use. cached = gpu_cached.get(stream=cuda_stream) else: cached = gpu_cached self.nF = cached.shape[1] self.nO = cached.shape[2] self.ops = lower_model.ops self._features = numpy.zeros((batch_size, self.nO), dtype='f') self._is_synchronized = False self._cuda_stream = cuda_stream self._cached = cached self._bp_hiddens = bp_features def __call__(self, X): return self.begin_update(X)[0] def begin_update(self, token_ids, drop=0.): self._features.fill(0) if not self._is_synchronized \ and self._cuda_stream is not None: self._cuda_stream.synchronize() self._is_synchronized = True # This is tricky, but (assuming GPU available); # - Input to forward on CPU # - Output from forward on CPU # - Input to backward on GPU! # - Output from backward on GPU cdef np.ndarray state_vector = self._features[:len(token_ids)] cdef np.ndarray hiddens = self._cached bp_hiddens = self._bp_hiddens cdef int[:, ::1] ids = token_ids self._sum_features(state_vector.data, hiddens.data, &ids[0,0], token_ids.shape[0], self.nF, self.nO) def backward(d_state_vector, sgd=None): # This will usually be on GPU if isinstance(d_state_vector, numpy.ndarray): d_state_vector = self.ops.xp.array(d_state_vector) d_tokens = bp_hiddens((d_state_vector, token_ids), sgd) return d_tokens return state_vector, backward cdef void _sum_features(self, float* output, const float* cached, const int* token_ids, int B, int F, int O) nogil: cdef int idx, b, f, i cdef const float* feature for b in range(B): for f in range(F): if token_ids[f] < 0: continue idx = token_ids[f] * F * O + f*O feature = &cached[idx] for i in range(O): output[i] += feature[i] output += O token_ids += F cdef void cpu_log_loss(float* d_scores, const float* costs, const int* is_valid, const float* scores, int O) nogil: """Do multi-label log loss""" cdef double max_, gmax, Z, gZ best = arg_max_if_gold(scores, costs, is_valid, O) guess = arg_max_if_valid(scores, is_valid, O) Z = 1e-10 gZ = 1e-10 max_ = scores[guess] gmax = scores[best] for i in range(O): if is_valid[i]: Z += exp(scores[i] - max_) if costs[i] <= costs[best]: gZ += exp(scores[i] - gmax) for i in range(O): if not is_valid[i]: d_scores[i] = 0. elif costs[i] <= costs[best]: d_scores[i] = (exp(scores[i]-max_) / Z) - (exp(scores[i]-gmax)/gZ) else: d_scores[i] = exp(scores[i]-max_) / Z cdef void cpu_regression_loss(float* d_scores, const float* costs, const int* is_valid, const float* scores, int O) nogil: cdef float eps = 2. best = arg_max_if_gold(scores, costs, is_valid, O) for i in range(O): if not is_valid[i]: d_scores[i] = 0. elif scores[i] < scores[best]: d_scores[i] = 0. else: # I doubt this is correct? # Looking for something like Huber loss diff = scores[i] - -costs[i] if diff > eps: d_scores[i] = eps elif diff < -eps: d_scores[i] = -eps else: d_scores[i] = diff cdef class Parser: """ Base class of the DependencyParser and EntityRecognizer. """ @classmethod def Model(cls, nr_class, token_vector_width=128, hidden_width=128, **cfg): token_vector_width = util.env_opt('token_vector_width', token_vector_width) hidden_width = util.env_opt('hidden_width', hidden_width) lower = PrecomputableAffine(hidden_width, nF=cls.nr_feature, nI=token_vector_width) with Model.use_device('cpu'): upper = chain( Maxout(hidden_width), zero_init(Affine(nr_class)) ) # TODO: This is an unfortunate hack atm! # Used to set input dimensions in network. lower.begin_training(lower.ops.allocate((500, token_vector_width))) upper.begin_training(upper.ops.allocate((500, hidden_width))) return lower, upper def __init__(self, Vocab vocab, moves=True, model=True, **cfg): """ Create a Parser. Arguments: vocab (Vocab): The vocabulary object. Must be shared with documents to be processed. The value is set to the .vocab attribute. moves (TransitionSystem): Defines how the parse-state is created, updated and evaluated. The value is set to the .moves attribute unless True (default), in which case a new instance is created with Parser.Moves(). model (object): Defines how the parse-state is created, updated and evaluated. The value is set to the .model attribute unless True (default), in which case a new instance is created with Parser.Model(). **cfg: Arbitrary configuration parameters. Set to the .cfg attribute """ self.vocab = vocab if moves is True: self.moves = self.TransitionSystem(self.vocab.strings, {}) else: self.moves = moves self.cfg = cfg if 'actions' in self.cfg: for action, labels in self.cfg.get('actions', {}).items(): for label in labels: self.moves.add_action(action, label) self.model = model def __reduce__(self): return (Parser, (self.vocab, self.moves, self.model), None, None) def __call__(self, Doc doc): """ Apply the parser or entity recognizer, setting the annotations onto the Doc object. Arguments: doc (Doc): The document to be processed. Returns: None """ self.parse_batch([doc], doc.tensor) def pipe(self, docs, int batch_size=1000, int n_threads=2): """ Process a stream of documents. Arguments: stream: The sequence of documents to process. batch_size (int): The number of documents to accumulate into a working set. n_threads (int): The number of threads with which to work on the buffer in parallel. Yields (Doc): Documents, in order. """ cdef StateClass parse_state cdef Doc doc queue = [] for docs in cytoolz.partition_all(batch_size, docs): tokvecs = self.model[0].ops.flatten([d.tensor for d in docs]) parse_states = self.parse_batch(docs, tokvecs) self.set_annotations(docs, parse_states) yield from docs def parse_batch(self, docs, tokvecs): cuda_stream = get_cuda_stream() states = self.moves.init_batch(docs) state2vec, vec2scores = self.get_batch_model(len(states), tokvecs, cuda_stream, 0.0) todo = [st for st in states if not st.is_final()] while todo: token_ids = self.get_token_ids(todo) vectors = state2vec(token_ids) scores = vec2scores(vectors) self.transition_batch(todo, scores) todo = [st for st in todo if not st.is_final()] return states def update(self, docs_tokvecs, golds, drop=0., sgd=None): docs, tokvecs = docs_tokvecs if isinstance(docs, Doc) and isinstance(golds, GoldParse): docs = [docs] golds = [golds] cuda_stream = get_cuda_stream() for gold in golds: self.moves.preprocess_gold(gold) states = self.moves.init_batch(docs) state2vec, vec2scores = self.get_batch_model(len(states), tokvecs, cuda_stream, drop) todo = [(s, g) for s, g in zip(states, golds) if not s.is_final()] backprops = [] cdef float loss = 0. while todo: states, golds = zip(*todo) token_ids = self.get_token_ids(states) vector, bp_vector = state2vec.begin_update(token_ids, drop=drop) scores, bp_scores = vec2scores.begin_update(vector, drop=drop) d_scores = self.get_batch_loss(states, golds, scores) d_vector = bp_scores(d_scores, sgd=sgd) if isinstance(self.model[0].ops, CupyOps) \ and not isinstance(token_ids, state2vec.ops.xp.ndarray): # Move token_ids and d_vector to CPU, asynchronously backprops.append(( get_async(cuda_stream, token_ids), get_async(cuda_stream, d_vector), bp_vector )) else: backprops.append((token_ids, d_vector, bp_vector)) self.transition_batch(states, scores) todo = [st for st in todo if not st[0].is_final()] # Tells CUDA to block, so our async copies complete. if cuda_stream is not None: cuda_stream.synchronize() d_tokvecs = state2vec.ops.allocate(tokvecs.shape) xp = state2vec.ops.xp # Handle for numpy/cupy for token_ids, d_vector, bp_vector in backprops: d_state_features = bp_vector(d_vector, sgd=sgd) active_feats = token_ids * (token_ids >= 0) active_feats = active_feats.reshape((token_ids.shape[0], token_ids.shape[1], 1)) if hasattr(xp, 'scatter_add'): xp.scatter_add(d_tokvecs, token_ids, d_state_features * active_feats) else: xp.add.at(d_tokvecs, token_ids, d_state_features * active_feats) return d_tokvecs def get_batch_model(self, batch_size, tokvecs, stream, dropout): lower, upper = self.model state2vec = precompute_hiddens(batch_size, tokvecs, lower, stream, drop=dropout) return state2vec, upper nr_feature = 13 def get_token_ids(self, states): cdef StateClass state cdef int n_tokens = self.nr_feature ids = numpy.zeros((len(states), n_tokens), dtype='i', order='C') for i, state in enumerate(states): state.set_context_tokens(ids[i]) return ids def transition_batch(self, states, float[:, ::1] scores): cdef StateClass state cdef int[500] is_valid # TODO: Unhack cdef float* c_scores = &scores[0, 0] for state in states: self.moves.set_valid(is_valid, state.c) guess = arg_max_if_valid(c_scores, is_valid, scores.shape[1]) action = self.moves.c[guess] action.do(state.c, action.label) c_scores += scores.shape[1] def get_batch_loss(self, states, golds, float[:, ::1] scores): cdef StateClass state cdef GoldParse gold cdef Pool mem = Pool() cdef int i is_valid = mem.alloc(self.moves.n_moves, sizeof(int)) costs = mem.alloc(self.moves.n_moves, sizeof(float)) cdef np.ndarray d_scores = numpy.zeros((len(states), self.moves.n_moves), dtype='f', order='C') c_d_scores = d_scores.data for i, (state, gold) in enumerate(zip(states, golds)): memset(is_valid, 0, self.moves.n_moves * sizeof(int)) memset(costs, 0, self.moves.n_moves * sizeof(float)) self.moves.set_costs(is_valid, costs, state, gold) cpu_log_loss(c_d_scores, costs, is_valid, &scores[i, 0], d_scores.shape[1]) c_d_scores += d_scores.shape[1] return d_scores def set_annotations(self, docs, states): cdef StateClass state cdef Doc doc for state, doc in zip(states, docs): self.moves.finalize_state(state.c) for i in range(doc.length): doc.c[i] = state.c._sent[i] self.moves.finalize_doc(doc) def add_label(self, label): for action in self.moves.action_types: added = self.moves.add_action(action, label) if added: # Important that the labels be stored as a list! We need the # order, or the model goes out of synch self.cfg.setdefault('extra_labels', []).append(label) def begin_training(self, gold_tuples, **cfg): if 'model' in cfg: self.model = cfg['model'] actions = self.moves.get_actions(gold_parses=gold_tuples) for action, labels in actions.items(): for label in labels: self.moves.add_action(action, label) if self.model is True: self.model = self.Model(self.moves.n_moves, **cfg) def use_params(self, params): # Can't decorate cdef class :(. Workaround. with self.model[0].use_params(params): with self.model[1].use_params(params): yield def to_disk(self, path): path = util.ensure_path(path) with (path / 'model.bin').open('wb') as file_: dill.dump(self.model, file_) def from_disk(self, path): path = util.ensure_path(path) with (path / 'model.bin').open('wb') as file_: self.model = dill.load(file_) def to_bytes(self): dill.dumps(self.model) def from_bytes(self, data): self.model = dill.loads(data) class ParserStateError(ValueError): def __init__(self, doc): ValueError.__init__(self, "Error analysing doc -- no valid actions available. This should " "never happen, so please report the error on the issue tracker. " "Here's the thread to do so --- reopen it if it's closed:\n" "https://github.com/spacy-io/spaCy/issues/429\n" "Please include the text that the parser failed on, which is:\n" "%s" % repr(doc.text)) cdef int arg_max_if_gold(const weight_t* scores, const weight_t* costs, const int* is_valid, int n) nogil: # Find minimum cost cdef float cost = 1 for i in range(n): if is_valid[i] and costs[i] < cost: cost = costs[i] # Now find best-scoring with that cost cdef int best = -1 for i in range(n): if costs[i] <= cost and is_valid[i]: if best == -1 or scores[i] > scores[best]: best = i return best cdef int arg_max_if_valid(const weight_t* scores, const int* is_valid, int n) nogil: cdef int best = -1 for i in range(n): if is_valid[i] >= 1: if best == -1 or scores[i] > scores[best]: best = i return best cdef int _arg_max_clas(const weight_t* scores, int move, const Transition* actions, int nr_class) except -1: cdef weight_t score = 0 cdef int mode = -1 cdef int i for i in range(nr_class): if actions[i].move == move and (mode == -1 or scores[i] >= score): mode = i score = scores[i] return mode