from collections import defaultdict import numpy cimport numpy as np from thinc.api import chain from thinc.neural.util import to_categorical, copy_array, get_array_module from .. import util from .pipes import Pipe from ..language import component from .._ml import Tok2Vec, build_morphologizer_model from .._ml import link_vectors_to_models, zero_init, flatten from .._ml import create_default_optimizer from ..errors import Errors, TempErrors from ..tokens.doc cimport Doc from ..vocab cimport Vocab from ..morphology cimport Morphology @component("morphologizer", assigns=["token.morph", "token.pos"]) class Morphologizer(Pipe): @classmethod def Model(cls, **cfg): if cfg.get('pretrained_dims') and not cfg.get('pretrained_vectors'): raise ValueError(TempErrors.T008) class_map = Morphology.create_class_map() return build_morphologizer_model(class_map.field_sizes, **cfg) def __init__(self, vocab, model=True, **cfg): self.vocab = vocab self.model = model self.cfg = dict(sorted(cfg.items())) self.cfg.setdefault('cnn_maxout_pieces', 2) self._class_map = self.vocab.morphology.create_class_map() @property def labels(self): return self.vocab.morphology.tag_names @property def tok2vec(self): if self.model in (None, True, False): return None else: return chain(self.model.tok2vec, flatten) def __call__(self, doc): features, tokvecs = self.predict([doc]) self.set_annotations([doc], features, tensors=tokvecs) return doc def pipe(self, stream, batch_size=128, n_threads=-1): for docs in util.minibatch(stream, size=batch_size): docs = list(docs) features, tokvecs = self.predict(docs) self.set_annotations(docs, features, tensors=tokvecs) yield from docs def predict(self, docs): if not any(len(doc) for doc in docs): # Handle case where there are no tokens in any docs. n_labels = self.model.nO guesses = [self.model.ops.allocate((0, n_labels)) for doc in docs] tokvecs = self.model.ops.allocate((0, self.model.tok2vec.nO)) return guesses, tokvecs tokvecs = self.model.tok2vec(docs) scores = self.model.softmax(tokvecs) return scores, tokvecs def set_annotations(self, docs, batch_scores, tensors=None): if isinstance(docs, Doc): docs = [docs] cdef Doc doc cdef Vocab vocab = self.vocab offsets = [self._class_map.get_field_offset(field) for field in self._class_map.fields] for i, doc in enumerate(docs): doc_scores = batch_scores[i] doc_guesses = scores_to_guesses(doc_scores, self.model.softmax.out_sizes) # Convert the neuron indices into feature IDs. doc_feat_ids = numpy.zeros((len(doc), len(self._class_map.fields)), dtype='i') for j in range(len(doc)): for k, offset in enumerate(offsets): if doc_guesses[j, k] == 0: doc_feat_ids[j, k] = 0 else: doc_feat_ids[j, k] = offset + doc_guesses[j, k] # Get the set of feature names. feats = {self._class_map.col2info[f][2] for f in doc_feat_ids[j]} if "NIL" in feats: feats.remove("NIL") # Now add the analysis, and set the hash. doc.c[j].morph = self.vocab.morphology.add(feats) if doc[j].morph.pos != 0: doc.c[j].pos = doc[j].morph.pos def update(self, examples, drop=0., sgd=None, losses=None): if losses is not None and self.name not in losses: losses[self.name] = 0. docs = [self._get_doc(ex) for ex in examples] tag_scores, bp_tag_scores = self.model.begin_update(docs, drop=drop) loss, d_tag_scores = self.get_loss(examples, tag_scores) bp_tag_scores(d_tag_scores, sgd=sgd) if losses is not None: losses[self.name] += loss def get_loss(self, examples, scores): guesses = [] for doc_scores in scores: guesses.append(scores_to_guesses(doc_scores, self.model.softmax.out_sizes)) guesses = self.model.ops.xp.vstack(guesses) scores = self.model.ops.xp.vstack(scores) if not isinstance(scores, numpy.ndarray): scores = scores.get() if not isinstance(guesses, numpy.ndarray): guesses = guesses.get() cdef int idx = 0 # Do this on CPU, as we can't vectorize easily. target = numpy.zeros(scores.shape, dtype='f') field_sizes = self.model.softmax.out_sizes for example in examples: doc = example.doc gold = example.gold for t, features in enumerate(gold.morphology): if features is None: target[idx] = scores[idx] else: gold_fields = {} for feature in features: field = self._class_map.feat2field[feature] gold_fields[field] = self._class_map.feat2offset[feature] for field in self._class_map.fields: field_id = self._class_map.field2id[field] col_offset = self._class_map.field2col[field] if field_id in gold_fields: target[idx, col_offset + gold_fields[field_id]] = 1. else: target[idx, col_offset] = 1. #print(doc[t]) #for col, info in enumerate(self._class_map.col2info): # print(col, info, scores[idx, col], target[idx, col]) idx += 1 target = self.model.ops.asarray(target, dtype='f') scores = self.model.ops.asarray(scores, dtype='f') d_scores = scores - target loss = (d_scores**2).sum() docs = [self._get_doc(ex) for ex in examples] d_scores = self.model.ops.unflatten(d_scores, [len(d) for d in docs]) return float(loss), d_scores def use_params(self, params): with self.model.use_params(params): yield def scores_to_guesses(scores, out_sizes): xp = get_array_module(scores) guesses = xp.zeros((scores.shape[0], len(out_sizes)), dtype='i') offset = 0 for i, size in enumerate(out_sizes): slice_ = scores[:, offset : offset + size] col_guesses = slice_.argmax(axis=1) guesses[:, i] = col_guesses offset += size return guesses