# coding: utf8 from __future__ import absolute_import, unicode_literals from contextlib import contextmanager import shutil import ujson from .tokenizer import Tokenizer from .vocab import Vocab from .tagger import Tagger from .matcher import Matcher from .lemmatizer import Lemmatizer from .train import Trainer from .syntax.parser import get_templates from .syntax.nonproj import PseudoProjectivity from .pipeline import DependencyParser, EntityRecognizer from .syntax.arc_eager import ArcEager from .syntax.ner import BiluoPushDown from .compat import unicode_ from .attrs import IS_STOP from . import attrs from . import orth from . import util from . import language_data class BaseDefaults(object): @classmethod def create_lemmatizer(cls, nlp=None): return Lemmatizer(cls.lemma_index, cls.lemma_exc, cls.lemma_rules) @classmethod def create_vocab(cls, nlp=None): lemmatizer = cls.create_lemmatizer(nlp) if nlp is None or nlp.path is None: lex_attr_getters = dict(cls.lex_attr_getters) # This is very messy, but it's the minimal working fix to Issue #639. # This defaults stuff needs to be refactored (again) lex_attr_getters[IS_STOP] = lambda string: string.lower() in cls.stop_words vocab = Vocab(lex_attr_getters=lex_attr_getters, tag_map=cls.tag_map, lemmatizer=lemmatizer) else: vocab = Vocab.load(nlp.path, lex_attr_getters=cls.lex_attr_getters, tag_map=cls.tag_map, lemmatizer=lemmatizer) for tag_str, exc in cls.morph_rules.items(): for orth_str, attrs in exc.items(): vocab.morphology.add_special_case(tag_str, orth_str, attrs) return vocab @classmethod def add_vectors(cls, nlp=None): if nlp is None or nlp.path is None: return False else: vec_path = nlp.path / 'vocab' / 'vec.bin' if vec_path.exists(): return lambda vocab: vocab.load_vectors_from_bin_loc(vec_path) @classmethod def create_tokenizer(cls, nlp=None): rules = cls.tokenizer_exceptions if cls.token_match: token_match = cls.token_match if cls.prefixes: prefix_search = util.compile_prefix_regex(cls.prefixes).search else: prefix_search = None if cls.suffixes: suffix_search = util.compile_suffix_regex(cls.suffixes).search else: suffix_search = None if cls.infixes: infix_finditer = util.compile_infix_regex(cls.infixes).finditer else: infix_finditer = None vocab = nlp.vocab if nlp is not None else cls.create_vocab(nlp) return Tokenizer(vocab, rules=rules, prefix_search=prefix_search, suffix_search=suffix_search, infix_finditer=infix_finditer, token_match=token_match) @classmethod def create_tagger(cls, nlp=None): if nlp is None: return Tagger(cls.create_vocab(), features=cls.tagger_features) elif nlp.path is False: return Tagger(nlp.vocab, features=cls.tagger_features) elif nlp.path is None or not (nlp.path / 'pos').exists(): return None else: return Tagger.load(nlp.path / 'pos', nlp.vocab) @classmethod def create_parser(cls, nlp=None, **cfg): if nlp is None: return DependencyParser(cls.create_vocab(), features=cls.parser_features, **cfg) elif nlp.path is False: return DependencyParser(nlp.vocab, features=cls.parser_features, **cfg) elif nlp.path is None or not (nlp.path / 'deps').exists(): return None else: return DependencyParser.load(nlp.path / 'deps', nlp.vocab, **cfg) @classmethod def create_entity(cls, nlp=None, **cfg): if nlp is None: return EntityRecognizer(cls.create_vocab(), features=cls.entity_features, **cfg) elif nlp.path is False: return EntityRecognizer(nlp.vocab, features=cls.entity_features, **cfg) elif nlp.path is None or not (nlp.path / 'ner').exists(): return None else: return EntityRecognizer.load(nlp.path / 'ner', nlp.vocab, **cfg) @classmethod def create_matcher(cls, nlp=None): if nlp is None: return Matcher(cls.create_vocab()) elif nlp.path is False: return Matcher(nlp.vocab) elif nlp.path is None or not (nlp.path / 'vocab').exists(): return None else: return Matcher.load(nlp.path / 'vocab', nlp.vocab) @classmethod def create_pipeline(self, nlp=None): pipeline = [] if nlp is None: return [] if nlp.tagger: pipeline.append(nlp.tagger) if nlp.parser: pipeline.append(nlp.parser) pipeline.append(PseudoProjectivity.deprojectivize) if nlp.entity: pipeline.append(nlp.entity) return pipeline token_match = language_data.TOKEN_MATCH prefixes = tuple(language_data.TOKENIZER_PREFIXES) suffixes = tuple(language_data.TOKENIZER_SUFFIXES) infixes = tuple(language_data.TOKENIZER_INFIXES) tag_map = dict(language_data.TAG_MAP) tokenizer_exceptions = {} parser_features = get_templates('parser') entity_features = get_templates('ner') tagger_features = Tagger.feature_templates # TODO -- fix this stop_words = set() lemma_rules = {} lemma_exc = {} lemma_index = {} morph_rules = {} lex_attr_getters = { attrs.LOWER: lambda string: string.lower(), attrs.NORM: lambda string: string, attrs.SHAPE: orth.word_shape, attrs.PREFIX: lambda string: string[0], attrs.SUFFIX: lambda string: string[-3:], attrs.CLUSTER: lambda string: 0, attrs.IS_ALPHA: orth.is_alpha, attrs.IS_ASCII: orth.is_ascii, attrs.IS_DIGIT: lambda string: string.isdigit(), attrs.IS_LOWER: orth.is_lower, attrs.IS_PUNCT: orth.is_punct, attrs.IS_SPACE: lambda string: string.isspace(), attrs.IS_TITLE: orth.is_title, attrs.IS_UPPER: orth.is_upper, attrs.IS_BRACKET: orth.is_bracket, attrs.IS_QUOTE: orth.is_quote, attrs.IS_LEFT_PUNCT: orth.is_left_punct, attrs.IS_RIGHT_PUNCT: orth.is_right_punct, attrs.LIKE_URL: orth.like_url, attrs.LIKE_NUM: orth.like_number, attrs.LIKE_EMAIL: orth.like_email, attrs.IS_STOP: lambda string: False, attrs.IS_OOV: lambda string: True } class Language(object): """ A text-processing pipeline. Usually you'll load this once per process, and pass the instance around your program. """ Defaults = BaseDefaults lang = None @classmethod def setup_directory(cls, path, **configs): for name, config in configs.items(): directory = path / name if directory.exists(): shutil.rmtree(str(directory)) directory.mkdir() with (directory / 'config.json').open('wb') as file_: data = ujson.dumps(config, indent=2) if isinstance(data, unicode_): data = data.encode('utf8') file_.write(data) if not (path / 'vocab').exists(): (path / 'vocab').mkdir() @classmethod @contextmanager def train(cls, path, gold_tuples, **configs): parser_cfg = configs.get('deps', {}) if parser_cfg.get('pseudoprojective'): # preprocess training data here before ArcEager.get_labels() is called gold_tuples = PseudoProjectivity.preprocess_training_data(gold_tuples) for subdir in ('deps', 'ner', 'pos'): if subdir not in configs: configs[subdir] = {} if parser_cfg: configs['deps']['actions'] = ArcEager.get_actions(gold_parses=gold_tuples) if 'ner' in configs: configs['ner']['actions'] = BiluoPushDown.get_actions(gold_parses=gold_tuples) cls.setup_directory(path, **configs) self = cls( path=path, vocab=False, tokenizer=False, tagger=False, parser=False, entity=False, matcher=False, serializer=False, vectors=False, pipeline=False) self.vocab = self.Defaults.create_vocab(self) self.tokenizer = self.Defaults.create_tokenizer(self) self.tagger = self.Defaults.create_tagger(self) self.parser = self.Defaults.create_parser(self) self.entity = self.Defaults.create_entity(self) self.pipeline = self.Defaults.create_pipeline(self) yield Trainer(self, gold_tuples) self.end_training() self.save_to_directory(path) def __init__(self, **overrides): if 'data_dir' in overrides and 'path' not in overrides: raise ValueError("The argument 'data_dir' has been renamed to 'path'") path = util.ensure_path(overrides.get('path', True)) if path is True: path = util.get_data_path() / self.lang if not path.exists() and 'path' not in overrides: path = None self.meta = overrides.get('meta', {}) self.path = path self.vocab = self.Defaults.create_vocab(self) \ if 'vocab' not in overrides \ else overrides['vocab'] add_vectors = self.Defaults.add_vectors(self) \ if 'add_vectors' not in overrides \ else overrides['add_vectors'] if self.vocab and add_vectors: add_vectors(self.vocab) self.tokenizer = self.Defaults.create_tokenizer(self) \ if 'tokenizer' not in overrides \ else overrides['tokenizer'] self.tagger = self.Defaults.create_tagger(self) \ if 'tagger' not in overrides \ else overrides['tagger'] self.parser = self.Defaults.create_parser(self) \ if 'parser' not in overrides \ else overrides['parser'] self.entity = self.Defaults.create_entity(self) \ if 'entity' not in overrides \ else overrides['entity'] self.matcher = self.Defaults.create_matcher(self) \ if 'matcher' not in overrides \ else overrides['matcher'] if 'make_doc' in overrides: self.make_doc = overrides['make_doc'] elif 'create_make_doc' in overrides: self.make_doc = overrides['create_make_doc'](self) elif not hasattr(self, 'make_doc'): self.make_doc = lambda text: self.tokenizer(text) if 'pipeline' in overrides: self.pipeline = overrides['pipeline'] elif 'create_pipeline' in overrides: self.pipeline = overrides['create_pipeline'](self) else: self.pipeline = [self.tagger, self.parser, self.matcher, self.entity] def __call__(self, text, tag=True, parse=True, entity=True): """ Apply the pipeline to some text. The text can span multiple sentences, and can contain arbtrary whitespace. Alignment into the original string is preserved. Args: text (unicode): The text to be processed. Returns: doc (Doc): A container for accessing the annotations. Example: >>> from spacy.en import English >>> nlp = English() >>> tokens = nlp('An example sentence. Another example sentence.') >>> tokens[0].orth_, tokens[0].head.tag_ ('An', 'NN') """ doc = self.make_doc(text) if self.entity and entity: # Add any of the entity labels already set, in case we don't have them. for token in doc: if token.ent_type != 0: self.entity.add_label(token.ent_type) skip = {self.tagger: not tag, self.parser: not parse, self.entity: not entity} for proc in self.pipeline: if proc and not skip.get(proc): proc(doc) return doc def pipe(self, texts, tag=True, parse=True, entity=True, n_threads=2, batch_size=1000): """ Process texts as a stream, and yield Doc objects in order. Supports GIL-free multi-threading. Arguments: texts (iterator) tag (bool) parse (bool) entity (bool) """ skip = {self.tagger: not tag, self.parser: not parse, self.entity: not entity} stream = (self.make_doc(text) for text in texts) for proc in self.pipeline: if proc and not skip.get(proc): if hasattr(proc, 'pipe'): stream = proc.pipe(stream, n_threads=n_threads, batch_size=batch_size) else: stream = (proc(item) for item in stream) for doc in stream: yield doc def save_to_directory(self, path): configs = { 'pos': self.tagger.cfg if self.tagger else {}, 'deps': self.parser.cfg if self.parser else {}, 'ner': self.entity.cfg if self.entity else {}, } self.setup_directory(path, **configs) strings_loc = path / 'vocab' / 'strings.json' with strings_loc.open('w', encoding='utf8') as file_: self.vocab.strings.dump(file_) self.vocab.dump(path / 'vocab' / 'lexemes.bin') # TODO: Word vectors? if self.tagger: self.tagger.model.dump(str(path / 'pos' / 'model')) if self.parser: self.parser.model.dump(str(path / 'deps' / 'model')) if self.entity: self.entity.model.dump(str(path / 'ner' / 'model')) def end_training(self, path=None): if self.tagger: self.tagger.model.end_training() if self.parser: self.parser.model.end_training() if self.entity: self.entity.model.end_training() # NB: This is slightly different from before --- we no longer default # to taking nlp.path if path is not None: self.save_to_directory(path)