# coding: utf8 from __future__ import unicode_literals import gzip import math from ast import literal_eval from pathlib import Path from preshed.counter import PreshCounter from ..vocab import write_binary_vectors from .. import util def model(lang, model_dir, freqs_data, clusters_data, vectors_data): model_path = Path(model_dir) freqs_path = Path(freqs_data) clusters_path = Path(clusters_data) if clusters_data else None vectors_path = Path(vectors_data) if vectors_data else None check_dirs(freqs_path, clusters_path, vectors_path) vocab = util.get_lang_class(lang).Defaults.create_vocab() probs, oov_prob = read_probs(freqs_path) clusters = read_clusters(clusters_path) if clusters_path else {} populate_vocab(vocab, clusters, probs, oov_prob) create_model(model_path, vectors_path, vocab, oov_prob) def create_model(model_path, vectors_path, vocab, oov_prob): vocab_path = model_path / 'vocab' lexemes_path = vocab_path / 'lexemes.bin' strings_path = vocab_path / 'strings.json' oov_path = vocab_path / 'oov_prob' if not model_path.exists(): model_path.mkdir() if not vocab_path.exists(): vocab_path.mkdir() vocab.dump(lexemes_path.as_posix()) with strings_path.open('w') as f: vocab.strings.dump(f) with oov_path.open('w') as f: f.write('%f' % oov_prob) if vectors_path: vectors_dest = model_path / 'vec.bin' write_binary_vectors(vectors_path.as_posix(), vectors_dest.as_posix()) def read_probs(freqs_path, max_length=100, min_doc_freq=5, min_freq=200): counts = PreshCounter() total = 0 freqs_file = check_unzip(freqs_path) for i, line in enumerate(freqs_file): freq, doc_freq, key = line.rstrip().split('\t', 2) freq = int(freq) counts.inc(i+1, freq) total += freq counts.smooth() log_total = math.log(total) freqs_file = check_unzip(freqs_path) probs = {} for line in freqs_file: freq, doc_freq, key = line.rstrip().split('\t', 2) doc_freq = int(doc_freq) freq = int(freq) if doc_freq >= min_doc_freq and freq >= min_freq and len(key) < max_length: word = literal_eval(key) smooth_count = counts.smoother(int(freq)) probs[word] = math.log(smooth_count) - log_total oov_prob = math.log(counts.smoother(0)) - log_total return probs, oov_prob def read_clusters(clusters_path): clusters = {} with clusters_path.open() as f: for line in f: try: cluster, word, freq = line.split() except ValueError: continue # If the clusterer has only seen the word a few times, its # cluster is unreliable. if int(freq) >= 3: clusters[word] = cluster else: clusters[word] = '0' # Expand clusters with re-casing for word, cluster in list(clusters.items()): if word.lower() not in clusters: clusters[word.lower()] = cluster if word.title() not in clusters: clusters[word.title()] = cluster if word.upper() not in clusters: clusters[word.upper()] = cluster return clusters def populate_vocab(vocab, clusters, probs, oov_probs): # Ensure probs has entries for all words seen during clustering. for word in clusters: if word not in probs: probs[word] = oov_prob for word, prob in reversed(sorted(list(probs.items()), key=lambda item: item[1])): lexeme = vocab[word] lexeme.prob = prob lexeme.is_oov = False # Decode as a little-endian string, so that we can do & 15 to get # the first 4 bits. See _parse_features.pyx if word in clusters: lexeme.cluster = int(clusters[word][::-1], 2) else: lexeme.cluster = 0 def check_unzip(file_path): file_path_str = file_path.as_posix() if file_path_str.endswith('gz'): return gzip.open(file_path_str) else: return file_path.open() def check_dirs(freqs_data, clusters_data, vectors_data): if not freqs_data.is_file(): util.sys_exit(freqs_data.as_posix(), title="No frequencies file found") if clusters_data and not clusters_data.is_file(): util.sys_exit(clusters_data.as_posix(), title="No Brown clusters file found") if vectors_data and not vectors_data.is_file(): util.sys_exit(vectors_data.as_posix(), title="No word vectors file found")