# cython: infer_types=True # cython: cdivision=True # cython: boundscheck=False # coding: utf-8 from __future__ import unicode_literals, print_function from collections import OrderedDict import numpy cimport cython.parallel import numpy.random cimport numpy as np from libc.math cimport exp from libcpp.vector cimport vector from libc.string cimport memset, memcpy from libc.stdlib cimport calloc, free, realloc from cymem.cymem cimport Pool from thinc.typedefs cimport weight_t, class_t, hash_t from thinc.extra.search cimport Beam from thinc.api import chain, clone from thinc.v2v import Model, Maxout, Affine from thinc.misc import LayerNorm from thinc.neural.ops import CupyOps from thinc.neural.util import get_array_module from thinc.linalg cimport Vec, VecVec cimport blis.cy from .._ml import zero_init, PrecomputableAffine, Tok2Vec, flatten from .._ml import link_vectors_to_models, create_default_optimizer from ..compat import copy_array from ..tokens.doc cimport Doc from ..gold cimport GoldParse from ..errors import Errors, TempErrors from .. import util from .stateclass cimport StateClass from .transition_system cimport Transition from . import _beam_utils from . import nonproj cdef WeightsC get_c_weights(model) except *: cdef WeightsC output cdef precompute_hiddens state2vec = model.state2vec output.feat_weights = state2vec.get_feat_weights() output.feat_bias = state2vec.bias.data cdef np.ndarray vec2scores_W = model.vec2scores.W cdef np.ndarray vec2scores_b = model.vec2scores.b output.hidden_weights = vec2scores_W.data output.hidden_bias = vec2scores_b.data return output cdef SizesC get_c_sizes(model, int batch_size) except *: cdef SizesC output output.states = batch_size output.classes = model.vec2scores.nO output.hiddens = model.state2vec.nO output.pieces = model.state2vec.nP output.feats = model.state2vec.nF output.embed_width = model.tokvecs.shape[1] return output cdef void resize_activations(ActivationsC* A, SizesC n) nogil: if n.states <= A._max_size: A._curr_size = n.states return if A._max_size == 0: A.token_ids = calloc(n.states * n.feats, sizeof(A.token_ids[0])) A.scores = calloc(n.states * n.classes, sizeof(A.scores[0])) A.unmaxed = calloc(n.states * n.hiddens * n.pieces, sizeof(A.unmaxed[0])) A.hiddens = calloc(n.states * n.hiddens, sizeof(A.hiddens[0])) A.is_valid = calloc(n.states * n.classes, sizeof(A.is_valid[0])) A._max_size = n.states else: A.token_ids = realloc(A.token_ids, n.states * n.feats * sizeof(A.token_ids[0])) A.scores = realloc(A.scores, n.states * n.classes * sizeof(A.scores[0])) A.unmaxed = realloc(A.unmaxed, n.states * n.hiddens * n.pieces * sizeof(A.unmaxed[0])) A.hiddens = realloc(A.hiddens, n.states * n.hiddens * sizeof(A.hiddens[0])) A.is_valid = realloc(A.is_valid, n.states * n.classes * sizeof(A.is_valid[0])) A._max_size = n.states A._curr_size = n.states cdef void predict_states(ActivationsC* A, StateC** states, const WeightsC* W, SizesC n) nogil: resize_activations(A, n) memset(A.unmaxed, 0, n.states * n.hiddens * n.pieces * sizeof(float)) memset(A.hiddens, 0, n.states * n.hiddens * sizeof(float)) for i in range(n.states): states[i].set_context_tokens(&A.token_ids[i*n.feats], n.feats) sum_state_features(A.unmaxed, W.feat_weights, A.token_ids, n.states, n.feats, n.hiddens * n.pieces) for i in range(n.states): VecVec.add_i(&A.unmaxed[i*n.hiddens*n.pieces], W.feat_bias, 1., n.hiddens * n.pieces) for j in range(n.hiddens): index = i * n.hiddens * n.pieces + j * n.pieces which = Vec.arg_max(&A.unmaxed[index], n.pieces) A.hiddens[i*n.hiddens + j] = A.unmaxed[index + which] memset(A.scores, 0, n.states * n.classes * sizeof(float)) cdef double one = 1.0 # Compute hidden-to-output blis.cy.gemm(blis.cy.NO_TRANSPOSE, blis.cy.TRANSPOSE, n.states, n.classes, n.hiddens, one, A.hiddens, n.hiddens, 1, W.hidden_weights, n.hiddens, 1, one, A.scores, n.classes, 1) # Add bias for i in range(n.states): VecVec.add_i(&A.scores[i*n.classes], W.hidden_bias, 1., n.classes) cdef void sum_state_features(float* output, const float* cached, const int* token_ids, int B, int F, int O) nogil: cdef int idx, b, f, i cdef const float* feature padding = cached cached += F * O cdef int id_stride = F*O cdef float one = 1. for b in range(B): for f in range(F): if token_ids[f] < 0: feature = &padding[f*O] else: idx = token_ids[f] * id_stride + f*O feature = &cached[idx] blis.cy.axpyv(blis.cy.NO_CONJUGATE, O, one, feature, 1, &output[b*O], 1) token_ids += F cdef void cpu_log_loss(float* d_scores, const float* costs, const int* is_valid, const float* scores, int O) nogil: """Do multi-label log loss""" cdef double max_, gmax, Z, gZ best = arg_max_if_gold(scores, costs, is_valid, O) guess = arg_max_if_valid(scores, is_valid, O) Z = 1e-10 gZ = 1e-10 max_ = scores[guess] gmax = scores[best] for i in range(O): if is_valid[i]: Z += exp(scores[i] - max_) if costs[i] <= costs[best]: gZ += exp(scores[i] - gmax) for i in range(O): if not is_valid[i]: d_scores[i] = 0. elif costs[i] <= costs[best]: d_scores[i] = (exp(scores[i]-max_) / Z) - (exp(scores[i]-gmax)/gZ) else: d_scores[i] = exp(scores[i]-max_) / Z cdef int arg_max_if_gold(const weight_t* scores, const weight_t* costs, const int* is_valid, int n) nogil: # Find minimum cost cdef float cost = 1 for i in range(n): if is_valid[i] and costs[i] < cost: cost = costs[i] # Now find best-scoring with that cost cdef int best = -1 for i in range(n): if costs[i] <= cost and is_valid[i]: if best == -1 or scores[i] > scores[best]: best = i return best cdef int arg_max_if_valid(const weight_t* scores, const int* is_valid, int n) nogil: cdef int best = -1 for i in range(n): if is_valid[i] >= 1: if best == -1 or scores[i] > scores[best]: best = i return best class ParserModel(Model): def __init__(self, tok2vec, lower_model, upper_model): Model.__init__(self) self._layers = [tok2vec, lower_model, upper_model] @property def tok2vec(self): return self._layers[0] def begin_update(self, docs, drop=0.): step_model = ParserStepModel(docs, self._layers, drop=drop) def finish_parser_update(golds, sgd=None): step_model.make_updates(sgd) return None return step_model, finish_parser_update def resize_output(self, new_output): # Weights are stored in (nr_out, nr_in) format, so we're basically # just adding rows here. smaller = self._layers[-1]._layers[-1] larger = Affine(self.moves.n_moves, smaller.nI) copy_array(larger.W[:smaller.nO], smaller.W) copy_array(larger.b[:smaller.nO], smaller.b) self._layers[-1]._layers[-1] = larger def begin_training(self, X, y=None): self.lower.begin_training(X, y=y) @property def tok2vec(self): return self._layers[0] @property def lower(self): return self._layers[1] @property def upper(self): return self._layers[2] class ParserStepModel(Model): def __init__(self, docs, layers, drop=0.): self.tokvecs, self.bp_tokvecs = layers[0].begin_update(docs, drop=drop) self.state2vec = precompute_hiddens(len(docs), self.tokvecs, layers[1], drop=drop) self.vec2scores = layers[-1] self.cuda_stream = util.get_cuda_stream() self.backprops = [] @property def nO(self): return self.state2vec.nO def begin_update(self, states, drop=0.): token_ids = self.get_token_ids(states) vector, get_d_tokvecs = self.state2vec.begin_update(token_ids, drop=0.0) mask = self.vec2scores.ops.get_dropout_mask(vector.shape, drop) if mask is not None: vector *= mask scores, get_d_vector = self.vec2scores.begin_update(vector, drop=drop) def backprop_parser_step(d_scores, sgd=None): d_vector = get_d_vector(d_scores, sgd=sgd) if mask is not None: d_vector *= mask if isinstance(self.state2vec.ops, CupyOps) \ and not isinstance(token_ids, self.state2vec.ops.xp.ndarray): # Move token_ids and d_vector to GPU, asynchronously self.backprops.append(( util.get_async(self.cuda_stream, token_ids), util.get_async(self.cuda_stream, d_vector), get_d_tokvecs )) else: self.backprops.append((token_ids, d_vector, get_d_tokvecs)) return None return scores, backprop_parser_step def get_token_ids(self, batch): states = _beam_utils.collect_states(batch) cdef StateClass state states = [state for state in states if not state.is_final()] cdef np.ndarray ids = numpy.zeros((len(states), self.state2vec.nF), dtype='i', order='C') ids.fill(-1) c_ids = ids.data for state in states: state.c.set_context_tokens(c_ids, ids.shape[1]) c_ids += ids.shape[1] return ids def make_updates(self, sgd): # Tells CUDA to block, so our async copies complete. if self.cuda_stream is not None: self.cuda_stream.synchronize() # Add a padding vector to the d_tokvecs gradient, so that missing # values don't affect the real gradient. d_tokvecs = self.ops.allocate((self.tokvecs.shape[0]+1, self.tokvecs.shape[1])) for ids, d_vector, bp_vector in self.backprops: d_state_features = bp_vector((d_vector, ids), sgd=sgd) ids = ids.flatten() d_state_features = d_state_features.reshape( (ids.size, d_state_features.shape[2])) self.ops.scatter_add(d_tokvecs, ids, d_state_features) # Padded -- see update() self.bp_tokvecs(d_tokvecs[:-1], sgd=sgd) return d_tokvecs cdef class precompute_hiddens: """Allow a model to be "primed" by pre-computing input features in bulk. This is used for the parser, where we want to take a batch of documents, and compute vectors for each (token, position) pair. These vectors can then be reused, especially for beam-search. Let's say we're using 12 features for each state, e.g. word at start of buffer, three words on stack, their children, etc. In the normal arc-eager system, a document of length N is processed in 2*N states. This means we'll create 2*N*12 feature vectors --- but if we pre-compute, we only need N*12 vector computations. The saving for beam-search is much better: if we have a beam of k, we'll normally make 2*N*12*K computations -- so we can save the factor k. This also gives a nice CPU/GPU division: we can do all our hard maths up front, packed into large multiplications, and do the hard-to-program parsing on the CPU. """ cdef readonly int nF, nO, nP cdef bint _is_synchronized cdef public object ops cdef np.ndarray _features cdef np.ndarray _cached cdef np.ndarray bias cdef object _cuda_stream cdef object _bp_hiddens def __init__(self, batch_size, tokvecs, lower_model, cuda_stream=None, drop=0.): gpu_cached, bp_features = lower_model.begin_update(tokvecs, drop=drop) cdef np.ndarray cached if not isinstance(gpu_cached, numpy.ndarray): # Note the passing of cuda_stream here: it lets # cupy make the copy asynchronously. # We then have to block before first use. cached = gpu_cached.get(stream=cuda_stream) else: cached = gpu_cached if not isinstance(lower_model.b, numpy.ndarray): self.bias = lower_model.b.get() else: self.bias = lower_model.b self.nF = cached.shape[1] self.nP = getattr(lower_model, 'nP', 1) self.nO = cached.shape[2] self.ops = lower_model.ops self._is_synchronized = False self._cuda_stream = cuda_stream self._cached = cached self._bp_hiddens = bp_features cdef const float* get_feat_weights(self) except NULL: if not self._is_synchronized and self._cuda_stream is not None: self._cuda_stream.synchronize() self._is_synchronized = True return self._cached.data def __call__(self, X): return self.begin_update(X)[0] def begin_update(self, token_ids, drop=0.): cdef np.ndarray state_vector = numpy.zeros( (token_ids.shape[0], self.nO, self.nP), dtype='f') # This is tricky, but (assuming GPU available); # - Input to forward on CPU # - Output from forward on CPU # - Input to backward on GPU! # - Output from backward on GPU bp_hiddens = self._bp_hiddens feat_weights = self.get_feat_weights() cdef int[:, ::1] ids = token_ids sum_state_features(state_vector.data, feat_weights, &ids[0,0], token_ids.shape[0], self.nF, self.nO*self.nP) state_vector += self.bias state_vector, bp_nonlinearity = self._nonlinearity(state_vector) def backward(d_state_vector_ids, sgd=None): d_state_vector, token_ids = d_state_vector_ids d_state_vector = bp_nonlinearity(d_state_vector, sgd) # This will usually be on GPU if not isinstance(d_state_vector, self.ops.xp.ndarray): d_state_vector = self.ops.xp.array(d_state_vector) d_tokens = bp_hiddens((d_state_vector, token_ids), sgd) return d_tokens return state_vector, backward def _nonlinearity(self, state_vector): if self.nP == 1: state_vector = state_vector.reshape(state_vector.shape[:-1]) mask = state_vector >= 0. state_vector *= mask else: state_vector, mask = self.ops.maxout(state_vector) def backprop_nonlinearity(d_best, sgd=None): if self.nP == 1: d_best *= mask d_best = d_best.reshape((d_best.shape + (1,))) return d_best else: return self.ops.backprop_maxout(d_best, mask, self.nP) return state_vector, backprop_nonlinearity